Spine grape(Vitis davidii Foex.)is an important wild grape species native to China.Fifteen red spine grape clones and three red Vitis vinifera grape varieties were used to evaluate the differences in the anthocyanin p...Spine grape(Vitis davidii Foex.)is an important wild grape species native to China.Fifteen red spine grape clones and three red Vitis vinifera grape varieties were used to evaluate the differences in the anthocyanin profiles and color properties of wines made from V.davidii and V.vinifera grapes.Among spine wines,‘Junzi#2’wine had the highest total phenolic and total anthocyanin,‘Xiangzhenzhu’wine had the highest total flavonoids,and‘Junzi#1’wine had the highest total tannin.The anthocyanin compositions of all of the spine wines were dominated by Mv-3,5-diglucoside.The total individual anthocyanin contents in spine wines,except‘Gaoshan#5’,‘Junzi#5055’,‘Junzi#5061’,and‘Junzi#5044’,were signifi cantly higher than in V.vinifera wines.Most of the spine wines had a stronger red intensity and a brighter chroma with a bluer hue than V.vinifera wines.Correlation analysis revealed that the color properties were closely related to the anthocyanin composition.These results suggest that wines made from spine grapes may be useful for the wine industry for their color properties and high individual anthocyanin contents.展开更多
Non-embryogenic calli (NEC) was inevitably and heavily produced when grape embryogenic calli (EC) was induced from explants or during the subculture of EC.A stable and highly efficient NEC transformation platform ...Non-embryogenic calli (NEC) was inevitably and heavily produced when grape embryogenic calli (EC) was induced from explants or during the subculture of EC.A stable and highly efficient NEC transformation platform is required to further sort out and verify key genes which determine/switch the identity of NEC and EC.In this research,a vector pA5 containing a chitinase signal sequence fused to gfp (green fluorescent protein) and an HDEL motive was used to target and immobilize into Agrobacterium strain EHA105 to establish a transformation platform for Vitis vinifera L.cv.Chardonnay NEC.It was determined that NEC 10 d after subculture was the best target tissue;30 min for inoculation followed by 3 d co-cultivation with the addition of 200 μmol L-1 acetosyringone (AS) was optimized as protocol.The use of bacterial densities as 1.0 at OD600 did not result in serious tissue hypersensitive reaction and it had higher efficiency.Kanamycin at 200 mg L-1 was picked for positive expression selection.The stable transformation of NEC was proved by reverse transcription-polymerase chain reaction techniques (RT-PCR) and fluorescent microscopy after three sub-cultures of the selected cell line.Highly efficient genetic transformation protocol of grape NEC was achieved and some of the optimized parameters were different from that reported for EC.This transformation platform could facilitate the verification of candidate somatic embryogenesis (SE) decisive genes,and the successfully transformed NEC with certain genes can also be used as bioreactors for the production of functional products,as NEC not only proliferates fast,but also keeps in a rather stable condition.展开更多
We examined the somatic embryogenesis from and histological studies of zygotic embryos of seeds in European Grape 'Moldova' (Vitis vinifera U 'Moldova'). Primary calli were initiated on Nitsch and Nitsch (NN) ...We examined the somatic embryogenesis from and histological studies of zygotic embryos of seeds in European Grape 'Moldova' (Vitis vinifera U 'Moldova'). Primary calli were initiated on Nitsch and Nitsch (NN) medium supplemented with 1.0 mg·L^-1 2,4-D and 0.5 mg·L^-1 6-BA. Embryogenic calli were produced upon transfer to a NN medium with 0.5 mg·L^-1 6-BA and 2 mg·L^-1 NAA and somatic embryos were obtained on a half strength MS medium without plant growth regulators. During the somatic embryo germination, an addition of 1.0 mg·L^-1 6-BA in the medium could accelerate somatic embryos to develop into normal plants and increase the conversion rate from 0 to 43.3%. Histological studies of embryogenic calli and somatic embryos demonstrated dynamic changes of proteins and starch grains. The developmental processes of somatic embryos were similar to those of zygotic embryos, including typical epiderma, cotyledon primordium and vascular tissue.展开更多
MicroRNAs (miRNAs) are a class of newly identified, small, non-coding RNAs that play vital roles in regulation. Based on miRNAs unique features of expression pattern, evolutionary conservation, secondary structure a...MicroRNAs (miRNAs) are a class of newly identified, small, non-coding RNAs that play vital roles in regulation. Based on miRNAs unique features of expression pattern, evolutionary conservation, secondary structure and genetic requirements for biogenesis, computational predication strategy is adopted to predicate the novel miRNAs. In this research, potential miRNAs and their targets in grapevine (Vitis vinifera) were predicted. We used previously known plant miRNAs against grapevine genome sequence databases to search for potential miRNAs. A total of 81 potential miRNAs were detected following a range of strict filtering criteria. Using these potential miRNA sequences, we could further blast the mRNA database to find the potential targets in this species. Comparative analysis of miRNAs in grapevine and other species reveals that miRNAs exhibit an evolutional conservation, the number and function of miRNAs must have significantly expanded during the evolution of land plants. Furthermore divergence made versatile functions of miRNAs feasible. Cluster of miRNAs likely represents an ancient expression mechanism. Predicted target genes include not only transcription factors but also genes implicated in floral development, signal transduction, diseases and stress response. Till now, little is known about experimental or computational identification of miRNA in grapevine species. Increased knowledge of the biological mechanisms of the grapevine will allow targeted approaches to increase the quality of fruit and reduce the impact of parasites together with stress, which could enable a sustainable, environmentally-sound, farming policv.展开更多
To lay a biological foundation for rootstocks and alternate irrigation (AI) popularization, the effects of partial rootzone drying (PRD) on the growth of the grapevine Malvasia grafted on different rootstocks were...To lay a biological foundation for rootstocks and alternate irrigation (AI) popularization, the effects of partial rootzone drying (PRD) on the growth of the grapevine Malvasia grafted on different rootstocks were investigated. Biological effects of 1/2 divided root irrigation on three combinations, i.e., Malvasia/420A, Malvasia/3309C, and Malvasia/110R, were studied by wood-boxed plants. All the plants were separated into three groups for different irrigation strategies. Mass growth of new root in alternate-irrigated plants was remarkably promoted by about 7.8-22.2% higher than the well- watered ones. However, new shoot growth, especially the internode was reduced by alternate irrigation. The average root-shoot ratio of all the three combinations was increased from 1.1 to 1.46. New root growth and internode length were decreased by fixed partial rootzone irrigation (FI) at different amount, M/3309C at 37.9 and 36.9%, M/110R at 18.4 and 22.5%, respectively. Total biomass of all the three combinations under FI decreased at the rate of 19.2-34.3% compared with well-watered ones. Water stress adaptation of grapevine mainly depends on rootstock. 110R is more efficient than 3309C and 420A in water stress adaptation. PRD-AI benefited root growth, thus improved the drought-resistant ability of grapevine.展开更多
Potassium(K+)is an essential macronutrient for plants to maintain normal growth and development.Shaker-like K+channels and HAK/KUP/KT transporters are critical components in the K+acquisition and translocation.In this...Potassium(K+)is an essential macronutrient for plants to maintain normal growth and development.Shaker-like K+channels and HAK/KUP/KT transporters are critical components in the K+acquisition and translocation.In this study,we identified 9 Shaker-like K+channel(VvK)and 18 HAK/KUP/KT transporter(VvKUP)genes in grape,which were renamed according to their distributions in the genome and relative linear orders among the distinct chromosomes.Similar structure organizations were found within each group according to the exon/intron structure and protein motif analysis.Chromosomal distribution analysis showed that 9 VvK genes and 18 VvKUP genes were unevenly distributed on 7 or 10 putative grape chromosomes.Three pairs of tandem duplicated genes and one pair of segmental duplicated genes were observed in the expansion of the grape VvKUP genes.Gene expression omnibus(GEO)data analysis showed that VvK and VvKUP genes were expressed differentially in distinct tissues.Various cis-acting regulatory elements pertinent to phytohormone responses and abiotic stresses,including K+deficiency response and drought stress,were detected in the promoter region of VvK and VvKUP genes.This study provides valuable information for further functional studies of VvK and VvKUP genes,and lays a foundation to explore K+uptake and utilization in fruit trees.展开更多
[Objectives] To obtain a resveratrol synthase gene of Vitis vinifera and make bioinformatics analysis. [Methods] Taking total RNA of V. vinifera as the template,by RT-PCR method,a complete c DNA sequence of resveratro...[Objectives] To obtain a resveratrol synthase gene of Vitis vinifera and make bioinformatics analysis. [Methods] Taking total RNA of V. vinifera as the template,by RT-PCR method,a complete c DNA sequence of resveratrol synthase gene was amplified from V. vinifera,and the resveratrol synthase gene was named as RS. The nucleic acid and protein sequences were analyzed using bioinformatics software.[Results]This sequence was 1179 bp in length,the similarity with reported resveratrol synthase gene reached 94%-99%,and the similarity with amino acid sequence reached 96%-99%; the RS gene encoded 392 amino acids,and amino acid sequence contained complete characteristic sequence GVLFGPGLT and active center sequence GCYAGGTVLR of stilbene synthase family; the predicted molecular weight was42. 78 k Da,the theoretical isoelectric point was 6. 57,the instability parameter was 35. 92,and it belonged to stable protein in the classification; the secondary structure was mainly α-helix,random coil and β-folding,α-helix content was 44. 13%,the random coil content was26. 53%,and β-folding content was 17. 66%. [Conclusions] The isolated RS gene is a resveratrol synthase gene from V. vinifera. This experiment is expected to lay a certain foundation for biosynthesis of resveratrol by the genetic engineering method.展开更多
Background:Vitis vinifera is universally appreciated herb(especially fruit)for their delicacy,nutrition and conventional as functional food.In the present study,we evaluated anti-hypercholesterolemic potential of Viti...Background:Vitis vinifera is universally appreciated herb(especially fruit)for their delicacy,nutrition and conventional as functional food.In the present study,we evaluated anti-hypercholesterolemic potential of Vitis vinifera red leaves extract in experimental wistar male rats.Material and methods:Qualitative and quantitative phytochemical screening of vitis vinifera methanolic extract(VVME)and vitis vinifera aqueous extract aqueous(VVAE)extract was carried out to identify the phytoconstituents.The anti-hypercholesterolemic activity was evaluated by inducing hypercholesterolemia with high cholesterol diet for 21 days in experimental animals.During the experimental periods parameters like lipid profile,liver function test,atherogenic index and histopathological studies were analysed.Results:Total tannins,total flavonoids and total phenolic contents were found in major amount in VVME.The lipid levels were significantly attenuated by different doses of VVME and VVAE.Moreover,VVME was found more effective than VVAE and histopathological results confirmed the effectiveness of VVME.Conclusion:It can be concluded that anti-hypercholesterolemic efficacy of Vitis vinifera might be due to presence of active phytoconstituents and its antioxidant efficacy.展开更多
Mexico is a large producer of table grape (Vitis vinifera L.) and therefore it is important to develop protocols to store the grape varieties germplasm. The objective of the present work was to design a protocol for...Mexico is a large producer of table grape (Vitis vinifera L.) and therefore it is important to develop protocols to store the grape varieties germplasm. The objective of the present work was to design a protocol for the cryopreservation by vitrification of zygotic embryos of V. vinifera cv. "Red Globe" and evaluate possible epigenetics changes. The plant vitrification solution 2 (PVS2) was utilized before the utilization of liquid nitrogen (LN). The effect of this protocol on embryo viability was tested by the triphenyl-tetrazolium chloride solution, as well as by the in vitro development of grape embryos into plantlet. A cDNA expression library of grape zygotic embryos was created to isolate expressed sequence tags of several DNA methyltrasferases. Gene expression of domains rearranged methyltransferase type 1 (DMR1) and DNA (cytosine-5)-methyltransferase 1 (MET1-2) isozymes was analyzed by quantitative reverse transcriptase PCR. The optimal conditions for vitrification were 10 min in 50% PVS2, followed by I0 min in 100% PVS2. Under these conditions, about 30% of plantlet was obtained from embryos after cryopreservation. It was recorded a reduction in the MET1-2 gene expression, which plays a role in the maintenance of DNA methylation. It is possible to cryopreserve viable grape zygotic embryos, although the treatment seems to induce alterations in the normal DNA methylation pattern of the zygotic embryo genome.展开更多
In the present work, bacterial soil communities of different grapevine exploitation samples are studied in order to elucidate the possible influence of different agrarian management techniques (use of fertilizers, ir...In the present work, bacterial soil communities of different grapevine exploitation samples are studied in order to elucidate the possible influence of different agrarian management techniques (use of fertilizers, irrigation with river water) may have on the rhizospheric microbiome of Vitis vinifera plants. Therefore, it is postulated the Cenophenoresistome as a novel methodology to evaluate complex communities' global resistance against different antibiotics, by using and adjusting a serial of techniques traditionally applied to evaluate a monospecific population's resistance against antibiotics (Vitek, ATB and disk diffusion methods). Likewise, the metabolic profile (CLPP: comunity level physiological profile) of bacterial communities is studied by Biolog ECO. In relation to the functional structure of the bacterial communities, it is observed that the metabolic profile (diversity, kinetics and CLPP) of unexploited soils differs from soils under anthropic influence. It is discussed the causes of resistance in the human clinic antibiotic treatment based on the agrarian management, especially with the contamination transmitted by irrigation water, which could be associated with changes in edaphic communities. The results obtained in the present study through two different approaches (Cenophenoresistome and metabolic profiles) are consistent with each other, suggesting that both methods can be good bioindicators of the state of humankind-altered soils that host natural ecosystems. Likewise, the concept of Cenophenoresistome is proposed as a bioindicator of soil response to alteration processes, as well as a possible predictor of its evolution in edaphic remediation processes.展开更多
Herein, we demonstrate a simple and inexpensive one-pot green synthesis of silver nanoparticles (Ag-NPs) functionalised with a combination of banana peel (Musa paradisiaca) and grape (Vitis vinifera) fruit extracts. T...Herein, we demonstrate a simple and inexpensive one-pot green synthesis of silver nanoparticles (Ag-NPs) functionalised with a combination of banana peel (Musa paradisiaca) and grape (Vitis vinifera) fruit extracts. The reaction mixture of aqueous silver nitrate, banana peel and grapefruit extracts revealed a dark brown colour after a reaction time of 18 minutes, which indicates the presence and the successful synthesis of silver nanoparticles. The optical and structural properties of the green synthesised nanoparticles were analysed using UV-Visible spectroscopy (UV-Vis) which confirmed an absorption band at 440 nm. The polydispersity nature and the AgNPs sizes of 30 nm were revealed using small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HR-TEM) techniques. Fourier transform infrared spectroscopy (FT-IR) studies revealed the structure of these nanoparticles which included carbonyl groups, primary amine groups, OH groups and other stabilizing functional groups characteristic of the properties of combined extracts. A simple, quick, less time-consuming surface plasmon resonance (SPR) and electrochemical method in the form of optical and electrochemical sensors have been developed for the detection of Escherichia coli 0157:H7. The obtained limit of detection (LOD) values for SPR and GBPE-Ag-NPs/GCE-based sensor systems were found to be 1 × 102 CFU/mL and 3.5 × 101 CFU/mL, respectively. The obtained values fall within the range for E. coli 0157:H7 in seawater.展开更多
Antimutagenic and DNA protective effect of an extract VinOserae from Vitis vinifera grapes on oxidative DNA damage was investigated. The extract’s ability to inhibit mutagenicity induced by tert-butyl hydroperoxide (...Antimutagenic and DNA protective effect of an extract VinOserae from Vitis vinifera grapes on oxidative DNA damage was investigated. The extract’s ability to inhibit mutagenicity induced by tert-butyl hydroperoxide (t-BHP) and hydrogen peroxide (H2O2) was determined with Ames test using Salmonella typhimurium His? TA102 strain. Inhibition values of 44.2% and 67.0% were detected for t-BHP and H2O2, respectively. A protective ability of the extract against DNA strand scission induced by hydroxyl radicals was studied with plasmid pBluescript II SK(-). The analysis of DNA strand breaks in plasmid DNA showed a significant inhibition of DNA damage.展开更多
Postharvest diseases are a major concern to the table grapes(Vitis vinifera L.)industry,leading to huge economic losses worldwide.Monitoring postharvest disease and early detection of fruit pathogens are crucial to mi...Postharvest diseases are a major concern to the table grapes(Vitis vinifera L.)industry,leading to huge economic losses worldwide.Monitoring postharvest disease and early detection of fruit pathogens are crucial to mitigate disease infestation and facilitate effective management practices.Over the years,traditional visual scouting for symptoms combined with biochemical assays,serological tests and/or DNA-based approach have been useful tools in fruit disease diagnosis.However,these tools have drawbacks in accurately detecting diseases during asymptomatic stage.Hence,these methods are not the most effective for disease confirmation and pathogen identification.In contrast,proteomics could provided instantaneous results that can be used to identify asymptomatic disease stages on table grapes.Therefore,this review provides an overview on the postharvest disease causing pathogens and associated symptoms on table grapes.Prospects of using changes in biochemical assays and proteomics as early response signal in postharvest disease management were discussed.This article proposed the need for continued advancement in the development of conventional tools,with emphasized on combining these tools with more robust and responsive novel approaches for better early disease diagnostic strategies.展开更多
Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (H...Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using transmission electron microscopy. The results showed that slight injury appeared in the ultrastructure of mesophyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extreme temperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane permeability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhibited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly damaged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stroma lamellae was disordered, and no starch granules were present. The cristae of the mitochondria were disrupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested. In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chilling stress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplast became round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps. In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested and the cristae were disrupted and became many small vesicles. Compared with cellular organelles in control plants, those in CA plant cells always maintained an integrated state during whole heat stress, except for the chloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that the stability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreatment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, the thermoresistance of grape seedlings was improved. The results obtained in the present study are the first, to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grape plants.展开更多
Traditional vine variety identification methods usually rely on the sampling of vine leaves followed by physical,physiological,biochemical and molecular measurement,which are destructive,time-consuming,labor-intensive...Traditional vine variety identification methods usually rely on the sampling of vine leaves followed by physical,physiological,biochemical and molecular measurement,which are destructive,time-consuming,labor-intensive and require experienced grape phenotype analysts.To mitigate these problems,this study aimed to develop an application(App)running on Android client to identify the wine grape automatically and in real-time,which can help the growers to quickly obtain the variety information.Experimental results showed that all Convolutional Neural Network(CNN)classification algorithms could achieve an accuracy of over 94%for twenty-one categories on validation data,which proves the feasibility of using transfer deep learning to identify grape species in field environments.In particular,the classification model with the highest average accuracy was GoogLeNet(99.91%)with a learning rate of 0.001,mini-batch size of 32,and maximum number of epochs in 80.Testing results of the App on Android devices also confirmed these results.展开更多
Understanding abiotic stress responses is one of the most important issues in plant research nowadays. Abiotic stress, including excess light, can promote the onset of oxidative stress through the accumulation of reac...Understanding abiotic stress responses is one of the most important issues in plant research nowadays. Abiotic stress, including excess light, can promote the onset of oxidative stress through the accumulation of reactive oxygen species. Oxidative stress also arises when in vitro propagated plants are exposed to high light upon transfer to ex vitro. To determine whether the underlying pathways activated at the transfer of in vitro grapevine to ex vitro conditions reflect the processes occurring upon light stress, we used Vitis vinifera Affymetrix GeneChip (VvGA) and a custom array of genes responsive to light stress (LSCA) detected by real-time reverse transcriptase PCR (qRT-PCR). When gene-expression profiles were compared, 'protein metabolism and modification', 'signaling', and 'anti-oxidative" genes were more represented in LSCA, while, in VvGA, 'cell wall metabolism' and 'secondary metabolism' were the categories in which gene expression varied more significantly. The above functional categories confirm previous studies involving other types of abiotic stresses, enhancing the common attributes of abiotic stress defense pathways. The LSCA analysis of our experimental system detected strong response of heat shock genes, particularly the protein rescuing mechanism involving the cooperation of two ATP-dependent chaperone systems, Hsp100 and Hsp70, which showed an unusually late response during the recovery period, of extreme relevance to remove non-functional, potentially harmful polypeptides arising from misfolding, denaturation, or aggregation brought about by stress. The success of LSCA also proves the feasibility of a custommade qRT-PCR approach, particularly for species for which no GeneChip is available and for researchers dealing with a specific and focused problem.展开更多
Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with ...Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with this challenge.Stable,high-quality wine grape production may be achieved by synchronizing the meso-and microclimate.To clarify the role of high altitude and row orientation in meso-and microclimate and the response of berries to it,we evaluated seven years(2012-2018)of climate data,two years of basic grape(Cabernet Sauvignon,Vitis vinifera L.)quality,and one-year microclimate from veraison to harvest.By comparing two locations(Sidon 2047 m,Sinon 2208 m)in Yunnan Province,China,we found that the average temperature has been stable at approximately 15℃ for seven years,with no extreme weather or,noticeable global warming.The light intensity(LI)in the north-south(NS)was more balanced than the east-west(EW)direction,and the east-west to the south(EW-S)canopy side was almost higher than the other sides.High LI was associated with high photosynthetically active radiation(PAR),ultraviolet(UV),and infrared(IR)light and vice versa.The north-south to the east(NS-E)and east-west to the north(EWN)sides were characterized by lower LI and higher UV and IR light,and higher total anthocyanin content.Most anthocyanin synthesis-related genes,for example,VvF3'H and VvF3'5'H,were highly expressed in NS-E from veraison to maturity.Perhaps UV and IR light induced their expression.This study provides new insights on the role of differently orientated rows in controlling grape quality due to varied light quality.The findings are globally significant,particularly in the context of climate change,and offer fresh insights into berry physiological responses and decision-making for the management of existing vineyards.展开更多
基金This work was supported by the Fundamental Research Funds for the Central Universities(Grant No.2452019208)the National Key R&D Program on Monitoring,Early Warning and Prevention of Major National Disasters(Grant No.2017YFC1502806)the China Agriculture Research System for Grapes(Grant No.CARS-29-zp-6).
文摘Spine grape(Vitis davidii Foex.)is an important wild grape species native to China.Fifteen red spine grape clones and three red Vitis vinifera grape varieties were used to evaluate the differences in the anthocyanin profiles and color properties of wines made from V.davidii and V.vinifera grapes.Among spine wines,‘Junzi#2’wine had the highest total phenolic and total anthocyanin,‘Xiangzhenzhu’wine had the highest total flavonoids,and‘Junzi#1’wine had the highest total tannin.The anthocyanin compositions of all of the spine wines were dominated by Mv-3,5-diglucoside.The total individual anthocyanin contents in spine wines,except‘Gaoshan#5’,‘Junzi#5055’,‘Junzi#5061’,and‘Junzi#5044’,were signifi cantly higher than in V.vinifera wines.Most of the spine wines had a stronger red intensity and a brighter chroma with a bluer hue than V.vinifera wines.Correlation analysis revealed that the color properties were closely related to the anthocyanin composition.These results suggest that wines made from spine grapes may be useful for the wine industry for their color properties and high individual anthocyanin contents.
基金supported by the National Natural Science Foundation of China (30471212,30500347)the Earmarked Fund for Modern Agro-Industry Technology Research System,Ministry of Agriculture,China (NYCYTX-3-CY-04)
文摘Non-embryogenic calli (NEC) was inevitably and heavily produced when grape embryogenic calli (EC) was induced from explants or during the subculture of EC.A stable and highly efficient NEC transformation platform is required to further sort out and verify key genes which determine/switch the identity of NEC and EC.In this research,a vector pA5 containing a chitinase signal sequence fused to gfp (green fluorescent protein) and an HDEL motive was used to target and immobilize into Agrobacterium strain EHA105 to establish a transformation platform for Vitis vinifera L.cv.Chardonnay NEC.It was determined that NEC 10 d after subculture was the best target tissue;30 min for inoculation followed by 3 d co-cultivation with the addition of 200 μmol L-1 acetosyringone (AS) was optimized as protocol.The use of bacterial densities as 1.0 at OD600 did not result in serious tissue hypersensitive reaction and it had higher efficiency.Kanamycin at 200 mg L-1 was picked for positive expression selection.The stable transformation of NEC was proved by reverse transcription-polymerase chain reaction techniques (RT-PCR) and fluorescent microscopy after three sub-cultures of the selected cell line.Highly efficient genetic transformation protocol of grape NEC was achieved and some of the optimized parameters were different from that reported for EC.This transformation platform could facilitate the verification of candidate somatic embryogenesis (SE) decisive genes,and the successfully transformed NEC with certain genes can also be used as bioreactors for the production of functional products,as NEC not only proliferates fast,but also keeps in a rather stable condition.
基金supported by "948" Ad-vanced Forestry Technology Introduction Program (Grant No. 2006-4-73).
文摘We examined the somatic embryogenesis from and histological studies of zygotic embryos of seeds in European Grape 'Moldova' (Vitis vinifera U 'Moldova'). Primary calli were initiated on Nitsch and Nitsch (NN) medium supplemented with 1.0 mg·L^-1 2,4-D and 0.5 mg·L^-1 6-BA. Embryogenic calli were produced upon transfer to a NN medium with 0.5 mg·L^-1 6-BA and 2 mg·L^-1 NAA and somatic embryos were obtained on a half strength MS medium without plant growth regulators. During the somatic embryo germination, an addition of 1.0 mg·L^-1 6-BA in the medium could accelerate somatic embryos to develop into normal plants and increase the conversion rate from 0 to 43.3%. Histological studies of embryogenic calli and somatic embryos demonstrated dynamic changes of proteins and starch grains. The developmental processes of somatic embryos were similar to those of zygotic embryos, including typical epiderma, cotyledon primordium and vascular tissue.
文摘MicroRNAs (miRNAs) are a class of newly identified, small, non-coding RNAs that play vital roles in regulation. Based on miRNAs unique features of expression pattern, evolutionary conservation, secondary structure and genetic requirements for biogenesis, computational predication strategy is adopted to predicate the novel miRNAs. In this research, potential miRNAs and their targets in grapevine (Vitis vinifera) were predicted. We used previously known plant miRNAs against grapevine genome sequence databases to search for potential miRNAs. A total of 81 potential miRNAs were detected following a range of strict filtering criteria. Using these potential miRNA sequences, we could further blast the mRNA database to find the potential targets in this species. Comparative analysis of miRNAs in grapevine and other species reveals that miRNAs exhibit an evolutional conservation, the number and function of miRNAs must have significantly expanded during the evolution of land plants. Furthermore divergence made versatile functions of miRNAs feasible. Cluster of miRNAs likely represents an ancient expression mechanism. Predicted target genes include not only transcription factors but also genes implicated in floral development, signal transduction, diseases and stress response. Till now, little is known about experimental or computational identification of miRNA in grapevine species. Increased knowledge of the biological mechanisms of the grapevine will allow targeted approaches to increase the quality of fruit and reduce the impact of parasites together with stress, which could enable a sustainable, environmentally-sound, farming policv.
基金supported by the National Natural Science Foundation of China(30471197).
文摘To lay a biological foundation for rootstocks and alternate irrigation (AI) popularization, the effects of partial rootzone drying (PRD) on the growth of the grapevine Malvasia grafted on different rootstocks were investigated. Biological effects of 1/2 divided root irrigation on three combinations, i.e., Malvasia/420A, Malvasia/3309C, and Malvasia/110R, were studied by wood-boxed plants. All the plants were separated into three groups for different irrigation strategies. Mass growth of new root in alternate-irrigated plants was remarkably promoted by about 7.8-22.2% higher than the well- watered ones. However, new shoot growth, especially the internode was reduced by alternate irrigation. The average root-shoot ratio of all the three combinations was increased from 1.1 to 1.46. New root growth and internode length were decreased by fixed partial rootzone irrigation (FI) at different amount, M/3309C at 37.9 and 36.9%, M/110R at 18.4 and 22.5%, respectively. Total biomass of all the three combinations under FI decreased at the rate of 19.2-34.3% compared with well-watered ones. Water stress adaptation of grapevine mainly depends on rootstock. 110R is more efficient than 3309C and 420A in water stress adaptation. PRD-AI benefited root growth, thus improved the drought-resistant ability of grapevine.
基金supported from grants of the Shandong Provincial Natural Science Foundation Project(Grant No.ZR2021MC086)and National Science Foundation of China(31601819 and 3151743).
文摘Potassium(K+)is an essential macronutrient for plants to maintain normal growth and development.Shaker-like K+channels and HAK/KUP/KT transporters are critical components in the K+acquisition and translocation.In this study,we identified 9 Shaker-like K+channel(VvK)and 18 HAK/KUP/KT transporter(VvKUP)genes in grape,which were renamed according to their distributions in the genome and relative linear orders among the distinct chromosomes.Similar structure organizations were found within each group according to the exon/intron structure and protein motif analysis.Chromosomal distribution analysis showed that 9 VvK genes and 18 VvKUP genes were unevenly distributed on 7 or 10 putative grape chromosomes.Three pairs of tandem duplicated genes and one pair of segmental duplicated genes were observed in the expansion of the grape VvKUP genes.Gene expression omnibus(GEO)data analysis showed that VvK and VvKUP genes were expressed differentially in distinct tissues.Various cis-acting regulatory elements pertinent to phytohormone responses and abiotic stresses,including K+deficiency response and drought stress,were detected in the promoter region of VvK and VvKUP genes.This study provides valuable information for further functional studies of VvK and VvKUP genes,and lays a foundation to explore K+uptake and utilization in fruit trees.
基金Supported by Construction and Expression of Heterologous Biosynthesis Pathway for Resveratrol(BAK:201502bsh)
文摘[Objectives] To obtain a resveratrol synthase gene of Vitis vinifera and make bioinformatics analysis. [Methods] Taking total RNA of V. vinifera as the template,by RT-PCR method,a complete c DNA sequence of resveratrol synthase gene was amplified from V. vinifera,and the resveratrol synthase gene was named as RS. The nucleic acid and protein sequences were analyzed using bioinformatics software.[Results]This sequence was 1179 bp in length,the similarity with reported resveratrol synthase gene reached 94%-99%,and the similarity with amino acid sequence reached 96%-99%; the RS gene encoded 392 amino acids,and amino acid sequence contained complete characteristic sequence GVLFGPGLT and active center sequence GCYAGGTVLR of stilbene synthase family; the predicted molecular weight was42. 78 k Da,the theoretical isoelectric point was 6. 57,the instability parameter was 35. 92,and it belonged to stable protein in the classification; the secondary structure was mainly α-helix,random coil and β-folding,α-helix content was 44. 13%,the random coil content was26. 53%,and β-folding content was 17. 66%. [Conclusions] The isolated RS gene is a resveratrol synthase gene from V. vinifera. This experiment is expected to lay a certain foundation for biosynthesis of resveratrol by the genetic engineering method.
文摘Background:Vitis vinifera is universally appreciated herb(especially fruit)for their delicacy,nutrition and conventional as functional food.In the present study,we evaluated anti-hypercholesterolemic potential of Vitis vinifera red leaves extract in experimental wistar male rats.Material and methods:Qualitative and quantitative phytochemical screening of vitis vinifera methanolic extract(VVME)and vitis vinifera aqueous extract aqueous(VVAE)extract was carried out to identify the phytoconstituents.The anti-hypercholesterolemic activity was evaluated by inducing hypercholesterolemia with high cholesterol diet for 21 days in experimental animals.During the experimental periods parameters like lipid profile,liver function test,atherogenic index and histopathological studies were analysed.Results:Total tannins,total flavonoids and total phenolic contents were found in major amount in VVME.The lipid levels were significantly attenuated by different doses of VVME and VVAE.Moreover,VVME was found more effective than VVAE and histopathological results confirmed the effectiveness of VVME.Conclusion:It can be concluded that anti-hypercholesterolemic efficacy of Vitis vinifera might be due to presence of active phytoconstituents and its antioxidant efficacy.
文摘Mexico is a large producer of table grape (Vitis vinifera L.) and therefore it is important to develop protocols to store the grape varieties germplasm. The objective of the present work was to design a protocol for the cryopreservation by vitrification of zygotic embryos of V. vinifera cv. "Red Globe" and evaluate possible epigenetics changes. The plant vitrification solution 2 (PVS2) was utilized before the utilization of liquid nitrogen (LN). The effect of this protocol on embryo viability was tested by the triphenyl-tetrazolium chloride solution, as well as by the in vitro development of grape embryos into plantlet. A cDNA expression library of grape zygotic embryos was created to isolate expressed sequence tags of several DNA methyltrasferases. Gene expression of domains rearranged methyltransferase type 1 (DMR1) and DNA (cytosine-5)-methyltransferase 1 (MET1-2) isozymes was analyzed by quantitative reverse transcriptase PCR. The optimal conditions for vitrification were 10 min in 50% PVS2, followed by I0 min in 100% PVS2. Under these conditions, about 30% of plantlet was obtained from embryos after cryopreservation. It was recorded a reduction in the MET1-2 gene expression, which plays a role in the maintenance of DNA methylation. It is possible to cryopreserve viable grape zygotic embryos, although the treatment seems to induce alterations in the normal DNA methylation pattern of the zygotic embryo genome.
文摘In the present work, bacterial soil communities of different grapevine exploitation samples are studied in order to elucidate the possible influence of different agrarian management techniques (use of fertilizers, irrigation with river water) may have on the rhizospheric microbiome of Vitis vinifera plants. Therefore, it is postulated the Cenophenoresistome as a novel methodology to evaluate complex communities' global resistance against different antibiotics, by using and adjusting a serial of techniques traditionally applied to evaluate a monospecific population's resistance against antibiotics (Vitek, ATB and disk diffusion methods). Likewise, the metabolic profile (CLPP: comunity level physiological profile) of bacterial communities is studied by Biolog ECO. In relation to the functional structure of the bacterial communities, it is observed that the metabolic profile (diversity, kinetics and CLPP) of unexploited soils differs from soils under anthropic influence. It is discussed the causes of resistance in the human clinic antibiotic treatment based on the agrarian management, especially with the contamination transmitted by irrigation water, which could be associated with changes in edaphic communities. The results obtained in the present study through two different approaches (Cenophenoresistome and metabolic profiles) are consistent with each other, suggesting that both methods can be good bioindicators of the state of humankind-altered soils that host natural ecosystems. Likewise, the concept of Cenophenoresistome is proposed as a bioindicator of soil response to alteration processes, as well as a possible predictor of its evolution in edaphic remediation processes.
文摘Herein, we demonstrate a simple and inexpensive one-pot green synthesis of silver nanoparticles (Ag-NPs) functionalised with a combination of banana peel (Musa paradisiaca) and grape (Vitis vinifera) fruit extracts. The reaction mixture of aqueous silver nitrate, banana peel and grapefruit extracts revealed a dark brown colour after a reaction time of 18 minutes, which indicates the presence and the successful synthesis of silver nanoparticles. The optical and structural properties of the green synthesised nanoparticles were analysed using UV-Visible spectroscopy (UV-Vis) which confirmed an absorption band at 440 nm. The polydispersity nature and the AgNPs sizes of 30 nm were revealed using small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HR-TEM) techniques. Fourier transform infrared spectroscopy (FT-IR) studies revealed the structure of these nanoparticles which included carbonyl groups, primary amine groups, OH groups and other stabilizing functional groups characteristic of the properties of combined extracts. A simple, quick, less time-consuming surface plasmon resonance (SPR) and electrochemical method in the form of optical and electrochemical sensors have been developed for the detection of Escherichia coli 0157:H7. The obtained limit of detection (LOD) values for SPR and GBPE-Ag-NPs/GCE-based sensor systems were found to be 1 × 102 CFU/mL and 3.5 × 101 CFU/mL, respectively. The obtained values fall within the range for E. coli 0157:H7 in seawater.
文摘Antimutagenic and DNA protective effect of an extract VinOserae from Vitis vinifera grapes on oxidative DNA damage was investigated. The extract’s ability to inhibit mutagenicity induced by tert-butyl hydroperoxide (t-BHP) and hydrogen peroxide (H2O2) was determined with Ames test using Salmonella typhimurium His? TA102 strain. Inhibition values of 44.2% and 67.0% were detected for t-BHP and H2O2, respectively. A protective ability of the extract against DNA strand scission induced by hydroxyl radicals was studied with plasmid pBluescript II SK(-). The analysis of DNA strand breaks in plasmid DNA showed a significant inhibition of DNA damage.
基金National Research Foundation(NRF)of South Africa(Grant Nos.137990)。
文摘Postharvest diseases are a major concern to the table grapes(Vitis vinifera L.)industry,leading to huge economic losses worldwide.Monitoring postharvest disease and early detection of fruit pathogens are crucial to mitigate disease infestation and facilitate effective management practices.Over the years,traditional visual scouting for symptoms combined with biochemical assays,serological tests and/or DNA-based approach have been useful tools in fruit disease diagnosis.However,these tools have drawbacks in accurately detecting diseases during asymptomatic stage.Hence,these methods are not the most effective for disease confirmation and pathogen identification.In contrast,proteomics could provided instantaneous results that can be used to identify asymptomatic disease stages on table grapes.Therefore,this review provides an overview on the postharvest disease causing pathogens and associated symptoms on table grapes.Prospects of using changes in biochemical assays and proteomics as early response signal in postharvest disease management were discussed.This article proposed the need for continued advancement in the development of conventional tools,with emphasized on combining these tools with more robust and responsive novel approaches for better early disease diagnostic strategies.
文摘Leaves from annual young grape plants (Vitis vinifera L. cv. Jingxiu) were used as experimental materials. The ultrastructural characteristics of mesophyll cells in chilling-treated plants after heat acclimation (HA) and in heat-treated plants after cold acclimation (CA) were observed and compared using transmission electron microscopy. The results showed that slight injury appeared in the ultrastructure of mesophyll cells after either HA (38℃ for 10 h) or CA (8℃ for 2.5 d), but the tolerance to subsequent extreme temperature stress was remarkably improved by HA or CA pretreatment. The increases in membrane permeability and malondialdehyde concentration under chilling (0℃) or heat (45℃) stress were markedly inhibited by HA or CA pretreatment. The mesophyll cells of plants not pretreated with HA were markedly damaged following chilling stress. The chloroplasts appeared irregular in shape, the arrangement of the stroma lamellae was disordered, and no starch granules were present. The cristae of the mitochondria were disrupted and became empty. The nucleus became irregular in shape and the nuclear membrane was digested. In contrast, the mesophyll cells of HA-pretreated plants maintained an intact ultrastructure under chilling stress. The mesophyll cells of control plants were also severely damaged under heat stress. The chloroplast became round in shape, the stroma lamellae became swollen, and the contents of vacuoles formed clumps. In the case of mitochondria of control plants subjected to heat stress, the outer envelope was digested and the cristae were disrupted and became many small vesicles. Compared with cellular organelles in control plants, those in CA plant cells always maintained an integrated state during whole heat stress, except for the chloroplasts, which became round in shape after 10 h heat stress. From these data, we suggest that the stability of mesophyll cells under chilling stress can be increased by HA pretreatment. Similarly, CA pretreatment can protect chloroplasts, mitochondria, and the nucleus against subsequent heat stress; thus, the thermoresistance of grape seedlings was improved. The results obtained in the present study are the first, to our knowledge, to offered cytological evidence of cross-adaptation to temperature stresses in grape plants.
基金supported by the Key R&D projects of Ningxia Hui Autonomous Region(Grant No.2019BBF02013).
文摘Traditional vine variety identification methods usually rely on the sampling of vine leaves followed by physical,physiological,biochemical and molecular measurement,which are destructive,time-consuming,labor-intensive and require experienced grape phenotype analysts.To mitigate these problems,this study aimed to develop an application(App)running on Android client to identify the wine grape automatically and in real-time,which can help the growers to quickly obtain the variety information.Experimental results showed that all Convolutional Neural Network(CNN)classification algorithms could achieve an accuracy of over 94%for twenty-one categories on validation data,which proves the feasibility of using transfer deep learning to identify grape species in field environments.In particular,the classification model with the highest average accuracy was GoogLeNet(99.91%)with a learning rate of 0.001,mini-batch size of 32,and maximum number of epochs in 80.Testing results of the App on Android devices also confirmed these results.
文摘Understanding abiotic stress responses is one of the most important issues in plant research nowadays. Abiotic stress, including excess light, can promote the onset of oxidative stress through the accumulation of reactive oxygen species. Oxidative stress also arises when in vitro propagated plants are exposed to high light upon transfer to ex vitro. To determine whether the underlying pathways activated at the transfer of in vitro grapevine to ex vitro conditions reflect the processes occurring upon light stress, we used Vitis vinifera Affymetrix GeneChip (VvGA) and a custom array of genes responsive to light stress (LSCA) detected by real-time reverse transcriptase PCR (qRT-PCR). When gene-expression profiles were compared, 'protein metabolism and modification', 'signaling', and 'anti-oxidative" genes were more represented in LSCA, while, in VvGA, 'cell wall metabolism' and 'secondary metabolism' were the categories in which gene expression varied more significantly. The above functional categories confirm previous studies involving other types of abiotic stresses, enhancing the common attributes of abiotic stress defense pathways. The LSCA analysis of our experimental system detected strong response of heat shock genes, particularly the protein rescuing mechanism involving the cooperation of two ATP-dependent chaperone systems, Hsp100 and Hsp70, which showed an unusually late response during the recovery period, of extreme relevance to remove non-functional, potentially harmful polypeptides arising from misfolding, denaturation, or aggregation brought about by stress. The success of LSCA also proves the feasibility of a custommade qRT-PCR approach, particularly for species for which no GeneChip is available and for researchers dealing with a specific and focused problem.
基金supported by the National Natural Science Foundation of China(Grant No.31772258)the National Key Research and Development Program(Grant No.2019YFD1000102-11)。
文摘Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with this challenge.Stable,high-quality wine grape production may be achieved by synchronizing the meso-and microclimate.To clarify the role of high altitude and row orientation in meso-and microclimate and the response of berries to it,we evaluated seven years(2012-2018)of climate data,two years of basic grape(Cabernet Sauvignon,Vitis vinifera L.)quality,and one-year microclimate from veraison to harvest.By comparing two locations(Sidon 2047 m,Sinon 2208 m)in Yunnan Province,China,we found that the average temperature has been stable at approximately 15℃ for seven years,with no extreme weather or,noticeable global warming.The light intensity(LI)in the north-south(NS)was more balanced than the east-west(EW)direction,and the east-west to the south(EW-S)canopy side was almost higher than the other sides.High LI was associated with high photosynthetically active radiation(PAR),ultraviolet(UV),and infrared(IR)light and vice versa.The north-south to the east(NS-E)and east-west to the north(EWN)sides were characterized by lower LI and higher UV and IR light,and higher total anthocyanin content.Most anthocyanin synthesis-related genes,for example,VvF3'H and VvF3'5'H,were highly expressed in NS-E from veraison to maturity.Perhaps UV and IR light induced their expression.This study provides new insights on the role of differently orientated rows in controlling grape quality due to varied light quality.The findings are globally significant,particularly in the context of climate change,and offer fresh insights into berry physiological responses and decision-making for the management of existing vineyards.