Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advecti...Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.展开更多
Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as ...Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.展开更多
Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sour...Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method.展开更多
BACKGROUND Gastrointestinal bleeding(GIB)is a severe and potentially life-threatening condition,especially in cases of delayed treatment.Computed tomography angiography(CTA)plays a pivotal role in the early identifica...BACKGROUND Gastrointestinal bleeding(GIB)is a severe and potentially life-threatening condition,especially in cases of delayed treatment.Computed tomography angiography(CTA)plays a pivotal role in the early identification of upper and lower GIB and in the prompt treatment of the haemorrhage.AIM To determine whether a volumetric estimation of the extravasated contrast at CTA in GIB may be a predictor of subsequent positive angiographic findings.METHODS In this retrospective single-centre study,35 patients(22 men;median age 69 years;range 16-92 years)admitted to our institution for active GIB detected at CTA and further submitted to catheter angiography between January 2018 and February 2022 were enrolled.Twenty-three(65.7%)patients underwent endoscopy before CTA.Bleeding volumetry was evaluated in both arterial and venous phases via a semi-automated dedicated software.Bleeding rate was obtained from volume change between the two phases and standardised for unit time.Patients were divided into two groups,according to the angiographic signs and their concordance with CTA.RESULTS Upper bleeding accounted for 42.9%and lower GIB for 57.1%.Mean haemoglobin value at the admission was 7.7 g/dL.A concordance between positive CTA and direct angiographic bleeding signs was found in 19(54.3%)cases.Despite no significant differences in terms of bleeding volume in the arterial phase(0.55 mL vs 0.33 mL,P=0.35),a statistically significant volume increase in the venous phase was identified in the group of patients with positive angiography(2.06 mL vs 0.9 mL,P=0.02).In the latter patient group,a significant increase in bleeding rate was also detected(2.18 mL/min vs 0.19 mL/min,P=0.02).CONCLUSION In GIB of any origin,extravasated contrast volumetric analysis at CTA could be a predictor of positive angiography and may help in avoiding further unnecessary procedures.展开更多
Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an ...Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.展开更多
To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. W...To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.展开更多
A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system de...A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.展开更多
AIM: To compare the volumetric-modulated arc ther- apy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC ...AIM: To compare the volumetric-modulated arc ther- apy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning sys- tem: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (gF), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the plan-ning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normal- ized to 95% of the PTV that received 100% of the pre- scribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different Io- cations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1,1 and 2A 1.09), Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and Vl0) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especial- ly the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.展开更多
It is highly desirable to design and synthesize two-dimensional nanostructured electrode materials with high electrical conductivity,large electrolyte-accessible surface area and more exposed active sites for energy s...It is highly desirable to design and synthesize two-dimensional nanostructured electrode materials with high electrical conductivity,large electrolyte-accessible surface area and more exposed active sites for energy storage applications.Herein,MXene/Co Al-LDH heterostructure has been prepared through electrostatic ordered hetero-assembly of monolayer MXene and edge-rich Co Al-LDH nanosheets in a faceto-face manner on molecular-scale for supercapacitor applications.Benefiting from the unique structure,strong interfacial interaction and synergistic effects between MXene and Co Al-LDH nanosheets,the electrical conductivity and exposed electrolyte-accessible active sites are significantly enhanced.The asprepared MXene/Co Al-LDH-80%(ML-80)film exhibits high volumetric capacity of 2472 C cm-3 in 3 M KOH electrolyte with high rate capability of 70.6%at 20 A g-1.Notably,to the best of our knowledge,the high volumetric capacity is the highest among other previously reported values for supercapacitors in aqueous electrolytes.Furthermore,our asymmetric supercapacitor device fabricated with ML-80 and MXene/graphene composite as cathode and anode,respectively,exhibits impressive volumetric energy density of 85.4 Wh L-1 with impressive cycling stability of 94.4%retention ratio after 30,000 continuous charge/discharge cycles.展开更多
Objective: A dosimetric study was performed to evaluate the performance of volumetric modulated arc radiotherapy with RapidArc on locally advanced nasopharyngeal carcinoma (NPC). Methods: The CT scan data sets of 20 p...Objective: A dosimetric study was performed to evaluate the performance of volumetric modulated arc radiotherapy with RapidArc on locally advanced nasopharyngeal carcinoma (NPC). Methods: The CT scan data sets of 20 patients of locally advanced NPC were selected randomly. The plans were managed using volumetric modulated arc with RapidArc and fixed nine-field coplanar dynamic intensity-modulated radiotherapy (IMRT) for these patients. The dosimetry of the planning target volumes (PTV), the organs at risk (OARs) and the healthy tissue were evaluated. The dose prescription was set to 70 Gy to the primary tumor and 60 Gy to the clinical target volumes (CTV) in 33 fractions. Each fraction applied daily, five fractions per week. The monitor unit (MU) values and the delivery time were scored to evaluate the expected treatment efficiency. Results: Both techniques had reached clinical treatment’s requirement. The mean dose (Dmean), maximum dose (Dmax) and minimum dose (Dmin) in RapidArc and fixed field IMRT for PTV were 68.4±0.6 Gy, 74.8±0.9 Gy and 56.8±1.1 Gy; and 67.6±0.6 Gy, 73.8±0.4 Gy and 57.5±0.6 Gy (P<0.05), respectively. Homogeneity index was 78.85±1.29 in RapidArc and 80.34±0.54 (P<0.05) in IMRT. The conformity index (CI: 95%) was 0.78±0.01 for both techniques (P>0.05). Compared to IMRT, RapidArc allowed a reduction of Dmean to the brain stem, mandible and optic nerves of 14.1% (P<0.05), 5.6% (P<0.05) and 12.2% (P<0.05), respectively. For the healthy tissue and the whole absorbed dose, Dmean of RapidArc was reduced by 3.6% (P<0.05), and 3.7% (P<0.05), respectively. The Dmean to the parotids, the spinal cord and the lens had no statistical difference among them. The mean MU values of RapidArc and IMRT were 550 and 1,379. The mean treatment time of RapidArc and IMRT was 165 s and 447 s. Compared to IMRT, the delivery time and the MU values of RapidArc were reduced by 63% and 60%, respectively. Conclusion: For locally advanced NPC, both RapidArc and IMRT reached the clinic requirement. The target volume coverage was similar for the different techniques. The RapidArc technique showed some improvements in OARs and other tissue sparing while using reduced MUs and delivery time.展开更多
To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permi...To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permian Sulige gas field in the Ordos Basin. The reserves can be determined by four major parameters of reservoir cutoffs, net pay, gas-bearing area and compression factor Z, which are controlled by reservoir characteristics and sedimentation. Well logging, seismic analysis, core analysis and gas testing, as well as thin section identification and SEM analysis were used to analyze the pore evolution and pore-throat structure. The porosity and permeability cutoffs are determined by distribution function curve,empirical statistics and intersection plot. Net pay and gas-bearing area are determined based on the cutoffs, gas testing and sand body distribution, and the compression factor Z is obtained by gas component. The results demonstrate that the reservoir in the Sulige gas field is characterized by ultralow porosity and permeability, and the cutoffs of porosity and permeability are 5% and 0.15×10^(–3) μm^2, respectively. The net pay and gas-bearing area are mainly affected by the sedimentary facies, sand body types and distribution. The gas component is dominated by methane which accounts for more than 90%, and the compression factor Z of H_8(P_2h_8) and S_1(P_1s_1) are 0.98 and 0.985, respectively. The distributary channels stacked and overlapped, forming a wide and thick sand body with good developed intergranular pores and intercrystalline pores. The upper part of channel sand with good porosity and permeability can be sweet spot for gas exploration. The complete set of calculation systems proposed for tight gas reserve calculation has proved to be effective based on application and feedback. This model provides a new concept and consideration for reserve prediction and calculation in other areas.展开更多
Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system whi...Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system which can enhance the stimulated reservoir volume. By using the combined finite and discrete element method, a model was built to describe hydraulic fracture propagation in tight oil reservoirs. Considering the effect of horizontal stress difference, number and spacing of perforation clus- ters, injection rate, and the density of natural fractures on fracture propagation, we used this model to simulate the fracture propagation in a tight formation of a certain oil- field. Simulation results show that when the horizontal stress difference is lower than 5 MPa, it is beneficial to form a complex fracture network system. If the horizontal stress difference is higher than 6 MPa, it is easy to form a planar fracture system; with high horizontal stress differ- ence, increasing the number of perforation clusters is beneficial to open and connect more natural fractures, and to improve the complexity of fracture network and the stimulated reservoir volume (SRV). As the injection rate increases, the effect of volumetric fracturing may be improved; the density of natural fractures may only have a great influence on the effect of volume stimulation in a low horizontal stress difference.展开更多
The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A...The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.展开更多
AIM To analyse clinical and dosimetric results of helical tomotherapy(HT) and volumetric modulated arc therapy(VMAT) in complex adjuvant breast and nodes irradiation.METHODS Seventy-three patients were included(31 HT ...AIM To analyse clinical and dosimetric results of helical tomotherapy(HT) and volumetric modulated arc therapy(VMAT) in complex adjuvant breast and nodes irradiation.METHODS Seventy-three patients were included(31 HT and 42 VMAT). Dose were 63.8 Gy(HT) and 63.2 Gy(VMAT) in the tumour bed, 52.2 Gy in the breast, 50.4 Gy in supraclavicular nodes(SCN) and internal mammary chain(IMC) with HT and 52.2 Gy and 49.3 Gy in IMC and SCN with VMAT in 29 fractions. Margins to particle tracking velocimetry were greater in the VMAT cohort(7 mm vs 5 mm).RESULTS For the HT cohort, the coverage of clinical target volumes was as follows: Tumour bed: 99.4% ± 2.4%; breast: 98.4% ± 4.3%; SCN: 99.5% ± 1.2%; IMC:96.5% ± 13.9%. For the VMAT cohort, the coverage was as follows: Tumour bed: 99.7% ± 0.5%, breast: 99.3% ± 0.7%; SCN: 99.6% ± 1.4%; IMC: 99.3% ± 3%. For ipsilateral lung, Dmean and V20 were 13.6 ± 1.2 Gy, 21.1% ± 5%(HT) and 13.6 ± 1.4 Gy, 20.1% ± 3.2%(VMAT). Dmean and V30 of the heart were 7.4 ± 1.4 Gy, 1% ± 1%(HT) and 10.3 ± 4.2 Gy, 2.5% ± 3.9%(VMAT). For controlateral breast Dmean was 3.6 ± 0.2 Gy(HT) and 4.6 ± 0.9 Gy(VMAT). Acute skin toxicity grade 3 was 5% in the two cohorts.CONCLUSION HT and VMAT in complex adjuvant breast irradiation allow a good coverage of target volumes with an acceptable acute tolerance. A longer follow-up is needed to assess the impact of low doses to healthy tissues.展开更多
It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution i...It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
For many tller crops,the plant archit ecture(PA),including the plant fresh weight,plant height,number of tllrs,tller angle and stem diameter,sigificantly afects the grain yield.In this study,we propose a method based ...For many tller crops,the plant archit ecture(PA),including the plant fresh weight,plant height,number of tllrs,tller angle and stem diameter,sigificantly afects the grain yield.In this study,we propose a method based on volumetric reconstruction for high-throughput three-dimensional(3D)wheat PA studies.The proposed methodology involves plant volumetric reconst ruction from multiple images,plant model processing and phenotypic parameter estimation and analysis.This study was performed on 80 Triticum aestium plants,and the results were analyzed.Comparing the automated measurements with manual measurements,the mean absolute per-centage error(MAPE)in the plant height and the plant fresh weight was 2.71%(1.08cm with an average plant height of 40.07cm)and 10.06%(1.41g with an average plant fresh weight of 14.06 g),respectively.The root mean square error(RMSE)was 137 cm and 1.79g for the plant height and plant fresh weight,respectively.The correlation cofficients were 0.95 and 0.96 for the plant height and plant fresh weight,respectively.Additionally,the proposed methodology,in-cluding plant reconstruction,model processing and trait ext raction,required only approximately 20s on average per plant using parallel computing on a graphics processing unit(GPU),dem-onstrating that the methodology would be valuable for a high-throughput phenotyping platform.展开更多
Haulage networks are vital to underground mining operations as they constitute the arteries through which blasted ore is transported to surface. In the sublevel stoping method and its variations, haulage drifts are ex...Haulage networks are vital to underground mining operations as they constitute the arteries through which blasted ore is transported to surface. In the sublevel stoping method and its variations, haulage drifts are excavated in advance near the ore block that will be mined out. Numerical modeling is a technique that is frequently employed to assess the redistribution of mining-induced stresses, and to compare the impact of different stope sequence scenarios on haulage network stability. In this study,typical geological settings in the Canadian Shield were replicated in a numerical model with a steeplydipping tabular orebody striking EW. All other formations trended in the same direction except for two dykes on either side of the orebody with a WNW-ESE strike. Rock mass properties and in situ stress measurements from a case study mine were used to calibrate the model. Drifts and crosscuts were excavated in the footwall and two stope sequence scenarios-a diminishing pillar and a center-out one-were implemented in 24 mining stages. A combined volumetric-numerical analysis was conducted for two active levels by comparing the extent of unstable rock mass at each stage using shear,compressive, and tensile instability criteria. Comparisons were made between the orebody and the host rock, between the footwall and hanging wall, and between the two stope sequence scenarios. It was determined that in general, the center-out option provided a larger volume of instability with the shear criterion when compared to the diminishing pillar one(625,477 m~3 compared to 586,774 m~3 in the orebody; 588 m~3 compared to 403 m~3 in the host rock). However, the reverse was true for tensile(134,298 m~3 compared to 128,834 m~3 in the orebody; 91,347 m~3 compared to 67,655 m~3 in the host rock)instability where the diminishing pillar option had the more voluminous share.展开更多
The time-dependent behaviors of coal and rocks were easily ignored. Besides, “three-stage” triaxial loading and unloading mechanics tests of sandstone were conducted based on the idea of the initial high in-situ str...The time-dependent behaviors of coal and rocks were easily ignored. Besides, “three-stage” triaxial loading and unloading mechanics tests of sandstone were conducted based on the idea of the initial high in-situ stress state recovery according to the full-life cycle evolution characteristics of surrounding rocks in deep mines(pre-excavation,excavation and post-excavation). The time-dependent stress-strain curves of sandstone were obtained. Meanwhile, the deformation and strength fitting relationships with time of sandstone were also built. Furthermore, the dilatancy and volumetric recovery mechanical mechanisms of sandstone were revealed. The results showed that: 1) There were significant time-dependent evolution characteristics on the deformation and strength of sandstone;2) There were significant correlations among the internal friction angle, cohesion and the simulated depths;3) Volumetric recovery phenomenon of sandstone was observed for the first time, which mainly occurred at the simulated depth of 2000 m. The above research conclusions could provide a certain theoretical basis for the stability control of surrounding rocks in deep mines.展开更多
Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration a...Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration are highly necessary for the smart power sources-unitized electronics.Despite the great progress,the fabrication of MSCs combining high integration with high volumetric performance remains largely unsolved.Herein,we develop a simple,fast and scalable strategy to fabricate graphene based highly integrated MSCs by a new effective continuous centrifugal coating technique.Notably,the resulting highly conductive graphene films can act as not only patterned microelectrodes but also metal-free current collectors and interconnects,endowing modular MSCs with high integrity,remarkable flexibility,tailored voltage and capacitance output,and outstanding performance uniformity.More importantly,the strong centrifugal force and shear force generated in continuous centrifugal coating process lead to graphene films with high alignment,compactness and packing density,contributing to excellent volumetric capacitance of ~31.8 F cm^(-3) and volumetric energy density of ~2.8 mWh cm^(-3),exceeding most reported integrated MSCs.Therefore,our work paves a novel way for simple and scalable fabrication of integrated MSCs and offers promising opportunities as standalone microscale power sources for new-generation electronics.展开更多
Volumetric fraction distribution measurement is a constituent part of process tomography system in oil-water-gas multiphase flow. With the technological development of nuclear radial inspection, dual-energy γ-ray tec...Volumetric fraction distribution measurement is a constituent part of process tomography system in oil-water-gas multiphase flow. With the technological development of nuclear radial inspection, dual-energy γ-ray techniques make it possible to investigate the concentration of the different components on the cross-section of oil-water-gas multiphase pipe-flow. The dual-energy gamma-ray technique is based on materials attenuation coefficients measurement comprised of two radioactive isotopes of 241Am and 241Cs which have emission energies at 59.5 keV and 662 keV in this project. Nuclear instruments and data acquisition system were designed to measure the material’s attenuation dose rate and a number of static tests were conducted at the Multiphase Laboratory, Institute of Mechanics, Chinese Academy of Sciences. Three phases of oil-water-gas media were inves- tigated for their possible use to simulate different media volumetric fraction distributions in experimental vessels. Attenuation intensities were measured, and the arithmetic of linear attenuation coefficients and the equations of volumetric fractions were studied. Investigation of an unexpected measurement error from attenuation equations revealed that a modified arithmetic was involved and finally the system achieved acceptable accuracy in experimental research.展开更多
基金supported as part of the Center for Hierarchical Waste Form Materials,an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences under Award No.DE-SC0016574.
文摘Porous materials present significant advantages for absorbing radioactive isotopes in nuclear waste streams.To improve absorption efficiency in nuclear waste treatment,a thorough understanding of the diffusion-advection process within porous structures is essential for material design.In this study,we present advancements in the volumetric lattice Boltzmann method(VLBM)for modeling and simulating pore-scale diffusion-advection of radioactive isotopes within geopolymer porous structures.These structures are created using the phase field method(PFM)to precisely control pore architectures.In our VLBM approach,we introduce a concentration field of an isotope seamlessly coupled with the velocity field and solve it by the time evolution of its particle population function.To address the computational intensity inherent in the coupled lattice Boltzmann equations for velocity and concentration fields,we implement graphics processing unit(GPU)parallelization.Validation of the developed model involves examining the flow and diffusion fields in porous structures.Remarkably,good agreement is observed for both the velocity field from VLBM and multiphysics object-oriented simulation environment(MOOSE),and the concentration field from VLBM and the finite difference method(FDM).Furthermore,we investigate the effects of background flow,species diffusivity,and porosity on the diffusion-advection behavior by varying the background flow velocity,diffusion coefficient,and pore volume fraction,respectively.Notably,all three parameters exert an influence on the diffusion-advection process.Increased background flow and diffusivity markedly accelerate the process due to increased advection intensity and enhanced diffusion capability,respectively.Conversely,increasing the porosity has a less significant effect,causing a slight slowdown of the diffusion-advection process due to the expanded pore volume.This comprehensive parametric study provides valuable insights into the kinetics of isotope uptake in porous structures,facilitating the development of porous materials for nuclear waste treatment applications.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(the Ministry of Science and ICT(MSIT))(No.2021R1A2C2006013)the Bio&Medical Technology Development Program of the NRF funded by the Korean government(MSIT)(No.RS-2023-00223591)the Korea Medical Device Development Fund grant funded by the Korean government(the MSIT,the MOTIE,the Ministry of Health and Welfare,the Ministry of Food and Drug Safety)(NTIS Number:9991006781,KMDF_PR_(2)0200901_0108)。
文摘Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.
基金This work is supported by National Natural Science Foundation of China(Nos.U23B20151 and 52171253).
文摘Owing to the complex lithology of unconventional reservoirs,field interpreters usually need to provide a basis for interpretation using logging simulation models.Among the various detection tools that use nuclear sources,the detector response can reflect various types of information of the medium.The Monte Carlo method is one of the primary methods used to obtain nuclear detection responses in complex environments.However,this requires a computational process with extensive random sampling,consumes considerable resources,and does not provide real-time response results.Therefore,a novel fast forward computational method(FFCM)for nuclear measurement that uses volumetric detection constraints to rapidly calculate the detector response in various complex environments is proposed.First,the data library required for the FFCM is built by collecting the detection volume,detector counts,and flux sensitivity functions through a Monte Carlo simulation.Then,based on perturbation theory and the Rytov approximation,a model for the detector response is derived using the flux sensitivity function method and a one-group diffusion model.The environmental perturbation is constrained to optimize the model according to the tool structure and the impact of the formation and borehole within the effective detection volume.Finally,the method is applied to a neutron porosity tool for verification.In various complex simulation environments,the maximum relative error between the calculated porosity results of Monte Carlo and FFCM was 6.80%,with a rootmean-square error of 0.62 p.u.In field well applications,the formation porosity model obtained using FFCM was in good agreement with the model obtained by interpreters,which demonstrates the validity and accuracy of the proposed method.
文摘BACKGROUND Gastrointestinal bleeding(GIB)is a severe and potentially life-threatening condition,especially in cases of delayed treatment.Computed tomography angiography(CTA)plays a pivotal role in the early identification of upper and lower GIB and in the prompt treatment of the haemorrhage.AIM To determine whether a volumetric estimation of the extravasated contrast at CTA in GIB may be a predictor of subsequent positive angiographic findings.METHODS In this retrospective single-centre study,35 patients(22 men;median age 69 years;range 16-92 years)admitted to our institution for active GIB detected at CTA and further submitted to catheter angiography between January 2018 and February 2022 were enrolled.Twenty-three(65.7%)patients underwent endoscopy before CTA.Bleeding volumetry was evaluated in both arterial and venous phases via a semi-automated dedicated software.Bleeding rate was obtained from volume change between the two phases and standardised for unit time.Patients were divided into two groups,according to the angiographic signs and their concordance with CTA.RESULTS Upper bleeding accounted for 42.9%and lower GIB for 57.1%.Mean haemoglobin value at the admission was 7.7 g/dL.A concordance between positive CTA and direct angiographic bleeding signs was found in 19(54.3%)cases.Despite no significant differences in terms of bleeding volume in the arterial phase(0.55 mL vs 0.33 mL,P=0.35),a statistically significant volume increase in the venous phase was identified in the group of patients with positive angiography(2.06 mL vs 0.9 mL,P=0.02).In the latter patient group,a significant increase in bleeding rate was also detected(2.18 mL/min vs 0.19 mL/min,P=0.02).CONCLUSION In GIB of any origin,extravasated contrast volumetric analysis at CTA could be a predictor of positive angiography and may help in avoiding further unnecessary procedures.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2007AA01Z338)the National Science Foundation for Post-doctoral Scientists of China(20080441051)the Jiangsu Province Science Foundation for Post-doctoral Scientists(0802014c)~~
文摘Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.
基金supported by the National Natural Science Foundation of China (No. 41004054) Research Fund for the Doctoral Program of Higher Education of China (No. 20105122120002)Natural Science Key Project, Sichuan Provincial Department of Education (No. 092A011)
文摘To fully extract and mine the multi-scale features of reservoirs and geologic structures in time/depth and space dimensions, a new 3D multi-scale volumetric curvature (MSVC) methodology is presented in this paper. We also propose a fast algorithm for computing 3D volumetric curvature. In comparison to conventional volumetric curvature attributes, its main improvements and key algorithms introduce multi-frequency components expansion in time-frequency domain and the corresponding multi-scale adaptive differential operator in the wavenumber domain, into the volumetric curvature calculation. This methodology can simultaneously depict seismic multi-scale features in both time and space. Additionally, we use data fusion of volumetric curvatures at various scales to take full advantage of the geologic features and anomalies extracted by curvature measurements at different scales. The 3D MSVC can highlight geologic anomalies and reduce noise at the same time. Thus, it improves the interpretation efficiency of curvature attributes analysis. The 3D MSVC is applied to both land and marine 3D seismic data. The results demonstrate that it can indicate the spatial distribution of reservoirs, detect faults and fracture zones, and identify their multi-scale properties.
文摘A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.
基金Supported by The National Natural Science Foundation of China, No. 30870738
文摘AIM: To compare the volumetric-modulated arc ther- apy (VMAT) plans with conventional sliding window intensity-modulated radiotherapy (c-IMRT) plans in esophageal cancer (EC). METHODS: Twenty patients with EC were selected, including 5 cases located in the cervical, the upper, the middle and the lower thorax, respectively. Five plans were generated with the eclipse planning sys- tem: three using c-IMRT with 5 fields (5F), 7 fields (7F) and 9 fields (gF), and two using VMAT with a single arc (1A) and double arcs (2A). The treatment plans were designed to deliver a dose of 60 Gy to the plan-ning target volume (PTV) with the same constrains in a 2.0 Gy daily fraction, 5 d a week. Plans were normal- ized to 95% of the PTV that received 100% of the pre- scribed dose. We examined the dose-volume histogram parameters of PTV and the organs at risk (OAR) such as lungs, spinal cord and heart. Monitor units (MU) and normal tissue complication probability (NTCP) of OAR were also reported. RESULTS: Both c-IMRT and VMAT plans resulted in abundant dose coverage of PTV for EC of different Io- cations. The dose conformity to PTV was improved as the number of field in c-IMRT or rotating arc in VMAT was increased. The doses to PTV and OAR in VMAT plans were not statistically different in comparison with c-IMRT plans, with the following exceptions: in cervical and upper thoracic EC, the conformity index (CI) was higher in VMAT (1A 0.78 and 2A 0.8) than in c-IMRT (5F 0.62, 7F 0.66 and 9F 0.73) and homogeneity was slightly better in c-IMRT (7F 1.09 and 9F 1.07) than in VMAT (1A 1,1 and 2A 1.09), Lung V30 was lower in VMAT (1A 12.52 and 2A 12.29) than in c-IMRT (7F 14.35 and 9F 14.81). The humeral head doses were significantly increased in VMAT as against c-IMRT. In the middle and lower thoracic EC, CI in VMAT (1A 0.76 and 2A 0.74) was higher than in c-IMRT (5F 0.63 Gy and 7F 0.67 Gy), and homogeneity was almost similar between VMAT and c-IMRT. V20 (2A 21.49 Gy vs 7F 24.59 Gy and 9F 24.16 Gy) and V30 (2A 9.73 Gy vs 5F 12.61 Gy, 7F 11.5 Gy and 9F 11.37 Gy) of lungs in VMAT were lower than in c-IMRT, but low doses to lungs (V5 and Vl0) were increased. V30 (1A 48.12 Gy vs 5F 59.2 Gy, 7F 58.59 Gy and 9F 57.2 Gy), V40 and V50 of heart in VMAT was lower than in c-IMRT. MUs in VMAT plans were significantly reduced in comparison with c-IMRT, maximum doses to the spinal cord and mean doses of lungs were similar between the two techniques. NTCP of spinal cord was 0 for all cases. NTCP of lungs and heart in VMAT were lower than in c-IMRT. The advantage of VMAT plan was enhanced by doubling the arc. CONCLUSION: Compared with c-IMRT, VMAT, especial- ly the 2A, slightly improves the OAR dose sparing, such as lungs and heart, and reduces NTCP and MU with a better PTV coverage.
基金supported by the financial support from the National Natural Science Foundation of China(21571040)the Young Top-Notch Talent of National Ten Thousand Talent Program+1 种基金Heilongjiang Touyan Innovation Team ProgramFundamental Research Funds for the Central Universities。
文摘It is highly desirable to design and synthesize two-dimensional nanostructured electrode materials with high electrical conductivity,large electrolyte-accessible surface area and more exposed active sites for energy storage applications.Herein,MXene/Co Al-LDH heterostructure has been prepared through electrostatic ordered hetero-assembly of monolayer MXene and edge-rich Co Al-LDH nanosheets in a faceto-face manner on molecular-scale for supercapacitor applications.Benefiting from the unique structure,strong interfacial interaction and synergistic effects between MXene and Co Al-LDH nanosheets,the electrical conductivity and exposed electrolyte-accessible active sites are significantly enhanced.The asprepared MXene/Co Al-LDH-80%(ML-80)film exhibits high volumetric capacity of 2472 C cm-3 in 3 M KOH electrolyte with high rate capability of 70.6%at 20 A g-1.Notably,to the best of our knowledge,the high volumetric capacity is the highest among other previously reported values for supercapacitors in aqueous electrolytes.Furthermore,our asymmetric supercapacitor device fabricated with ML-80 and MXene/graphene composite as cathode and anode,respectively,exhibits impressive volumetric energy density of 85.4 Wh L-1 with impressive cycling stability of 94.4%retention ratio after 30,000 continuous charge/discharge cycles.
文摘Objective: A dosimetric study was performed to evaluate the performance of volumetric modulated arc radiotherapy with RapidArc on locally advanced nasopharyngeal carcinoma (NPC). Methods: The CT scan data sets of 20 patients of locally advanced NPC were selected randomly. The plans were managed using volumetric modulated arc with RapidArc and fixed nine-field coplanar dynamic intensity-modulated radiotherapy (IMRT) for these patients. The dosimetry of the planning target volumes (PTV), the organs at risk (OARs) and the healthy tissue were evaluated. The dose prescription was set to 70 Gy to the primary tumor and 60 Gy to the clinical target volumes (CTV) in 33 fractions. Each fraction applied daily, five fractions per week. The monitor unit (MU) values and the delivery time were scored to evaluate the expected treatment efficiency. Results: Both techniques had reached clinical treatment’s requirement. The mean dose (Dmean), maximum dose (Dmax) and minimum dose (Dmin) in RapidArc and fixed field IMRT for PTV were 68.4±0.6 Gy, 74.8±0.9 Gy and 56.8±1.1 Gy; and 67.6±0.6 Gy, 73.8±0.4 Gy and 57.5±0.6 Gy (P<0.05), respectively. Homogeneity index was 78.85±1.29 in RapidArc and 80.34±0.54 (P<0.05) in IMRT. The conformity index (CI: 95%) was 0.78±0.01 for both techniques (P>0.05). Compared to IMRT, RapidArc allowed a reduction of Dmean to the brain stem, mandible and optic nerves of 14.1% (P<0.05), 5.6% (P<0.05) and 12.2% (P<0.05), respectively. For the healthy tissue and the whole absorbed dose, Dmean of RapidArc was reduced by 3.6% (P<0.05), and 3.7% (P<0.05), respectively. The Dmean to the parotids, the spinal cord and the lens had no statistical difference among them. The mean MU values of RapidArc and IMRT were 550 and 1,379. The mean treatment time of RapidArc and IMRT was 165 s and 447 s. Compared to IMRT, the delivery time and the MU values of RapidArc were reduced by 63% and 60%, respectively. Conclusion: For locally advanced NPC, both RapidArc and IMRT reached the clinic requirement. The target volume coverage was similar for the different techniques. The RapidArc technique showed some improvements in OARs and other tissue sparing while using reduced MUs and delivery time.
基金funded by the Geological Survey Project of the China Geological Survey (grants No. DD20189614, DD20160173)the National Science Foundation of China (grants No. 41702204, 41402120)
文摘To accurately measure and evaluate reserves is critical for ensuring successful production of unconventional oil and gas. This work proposes a volumetric model to evaluate the tight sandstone gas reserves of the Permian Sulige gas field in the Ordos Basin. The reserves can be determined by four major parameters of reservoir cutoffs, net pay, gas-bearing area and compression factor Z, which are controlled by reservoir characteristics and sedimentation. Well logging, seismic analysis, core analysis and gas testing, as well as thin section identification and SEM analysis were used to analyze the pore evolution and pore-throat structure. The porosity and permeability cutoffs are determined by distribution function curve,empirical statistics and intersection plot. Net pay and gas-bearing area are determined based on the cutoffs, gas testing and sand body distribution, and the compression factor Z is obtained by gas component. The results demonstrate that the reservoir in the Sulige gas field is characterized by ultralow porosity and permeability, and the cutoffs of porosity and permeability are 5% and 0.15×10^(–3) μm^2, respectively. The net pay and gas-bearing area are mainly affected by the sedimentary facies, sand body types and distribution. The gas component is dominated by methane which accounts for more than 90%, and the compression factor Z of H_8(P_2h_8) and S_1(P_1s_1) are 0.98 and 0.985, respectively. The distributary channels stacked and overlapped, forming a wide and thick sand body with good developed intergranular pores and intercrystalline pores. The upper part of channel sand with good porosity and permeability can be sweet spot for gas exploration. The complete set of calculation systems proposed for tight gas reserve calculation has proved to be effective based on application and feedback. This model provides a new concept and consideration for reserve prediction and calculation in other areas.
文摘Volumetric fracturing is a primary stimulation technology for economical and effective exploitation of tight oil reservoirs. The main mechanism is to connect natural fractures to generate a fracture network system which can enhance the stimulated reservoir volume. By using the combined finite and discrete element method, a model was built to describe hydraulic fracture propagation in tight oil reservoirs. Considering the effect of horizontal stress difference, number and spacing of perforation clus- ters, injection rate, and the density of natural fractures on fracture propagation, we used this model to simulate the fracture propagation in a tight formation of a certain oil- field. Simulation results show that when the horizontal stress difference is lower than 5 MPa, it is beneficial to form a complex fracture network system. If the horizontal stress difference is higher than 6 MPa, it is easy to form a planar fracture system; with high horizontal stress differ- ence, increasing the number of perforation clusters is beneficial to open and connect more natural fractures, and to improve the complexity of fracture network and the stimulated reservoir volume (SRV). As the injection rate increases, the effect of volumetric fracturing may be improved; the density of natural fractures may only have a great influence on the effect of volume stimulation in a low horizontal stress difference.
基金supported by Major Science and Technology Projects of Heilongjiang Province(2019ZX09A01)National Key Technology R&D Program(Grant No.2017YFB1401805)+1 种基金the China Postdoctoral Science Foundation(2019T120285,2018M641884)Heilongjiang Province Postdoctoral Science Foundation(LBH-Z18235)。
文摘The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.
文摘AIM To analyse clinical and dosimetric results of helical tomotherapy(HT) and volumetric modulated arc therapy(VMAT) in complex adjuvant breast and nodes irradiation.METHODS Seventy-three patients were included(31 HT and 42 VMAT). Dose were 63.8 Gy(HT) and 63.2 Gy(VMAT) in the tumour bed, 52.2 Gy in the breast, 50.4 Gy in supraclavicular nodes(SCN) and internal mammary chain(IMC) with HT and 52.2 Gy and 49.3 Gy in IMC and SCN with VMAT in 29 fractions. Margins to particle tracking velocimetry were greater in the VMAT cohort(7 mm vs 5 mm).RESULTS For the HT cohort, the coverage of clinical target volumes was as follows: Tumour bed: 99.4% ± 2.4%; breast: 98.4% ± 4.3%; SCN: 99.5% ± 1.2%; IMC:96.5% ± 13.9%. For the VMAT cohort, the coverage was as follows: Tumour bed: 99.7% ± 0.5%, breast: 99.3% ± 0.7%; SCN: 99.6% ± 1.4%; IMC: 99.3% ± 3%. For ipsilateral lung, Dmean and V20 were 13.6 ± 1.2 Gy, 21.1% ± 5%(HT) and 13.6 ± 1.4 Gy, 20.1% ± 3.2%(VMAT). Dmean and V30 of the heart were 7.4 ± 1.4 Gy, 1% ± 1%(HT) and 10.3 ± 4.2 Gy, 2.5% ± 3.9%(VMAT). For controlateral breast Dmean was 3.6 ± 0.2 Gy(HT) and 4.6 ± 0.9 Gy(VMAT). Acute skin toxicity grade 3 was 5% in the two cohorts.CONCLUSION HT and VMAT in complex adjuvant breast irradiation allow a good coverage of target volumes with an acceptable acute tolerance. A longer follow-up is needed to assess the impact of low doses to healthy tissues.
基金financially supported by National Basic Research Program of China (973 Program) (No. 2010CB732002)National Natural Science Foundation of China (Nos. 51374211, 51374215)+1 种基金National Key Foundation for Exploring Scientific Instrument of China (No. 2013YQ240803)Fundamental Research Funds for the Central Universities (No. 2009QM02)
文摘It is always desirable to know the interior deformation pattern when a rock is subjected to mechanicalload. Few experimental techniques exist that can represent full-field three-dimensional (3D) straindistribution inside a rock specimen. And yet it is crucial that this information is available for fully understandingthe failure mechanism of rocks or other geomaterials. In this study, by using the newlydeveloped digital volumetric speckle photography (DVSP) technique in conjunction with X-ray computedtomography (CT) and taking advantage of natural 3D speckles formed inside the rock due to materialimpurities and voids, we can probe the interior of a rock to map its deformation pattern under load andshed light on its failure mechanism. We apply this technique to the analysis of a red sandstone specimenunder increasing uniaxial compressive load applied incrementally. The full-field 3D displacement fieldsare obtained in the specimen as a function of the load, from which both the volumetric and the deviatoricstrain fields are calculated. Strain localization zones which lead to the eventual failure of the rock areidentified. The results indicate that both shear and tension are contributing factors to the failuremechanism. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金supported by grants from the National Program on High Technology Development(2013AA102403)the Program for New Century Excellent Talents in University(NCET-10-0386)+1 种基金the National Natural Science Foundation of China(30921091,31200274)the Fundamental Research Funds for the Central Universities(2013PY034).
文摘For many tller crops,the plant archit ecture(PA),including the plant fresh weight,plant height,number of tllrs,tller angle and stem diameter,sigificantly afects the grain yield.In this study,we propose a method based on volumetric reconstruction for high-throughput three-dimensional(3D)wheat PA studies.The proposed methodology involves plant volumetric reconst ruction from multiple images,plant model processing and phenotypic parameter estimation and analysis.This study was performed on 80 Triticum aestium plants,and the results were analyzed.Comparing the automated measurements with manual measurements,the mean absolute per-centage error(MAPE)in the plant height and the plant fresh weight was 2.71%(1.08cm with an average plant height of 40.07cm)and 10.06%(1.41g with an average plant fresh weight of 14.06 g),respectively.The root mean square error(RMSE)was 137 cm and 1.79g for the plant height and plant fresh weight,respectively.The correlation cofficients were 0.95 and 0.96 for the plant height and plant fresh weight,respectively.Additionally,the proposed methodology,in-cluding plant reconstruction,model processing and trait ext raction,required only approximately 20s on average per plant using parallel computing on a graphics processing unit(GPU),dem-onstrating that the methodology would be valuable for a high-throughput phenotyping platform.
基金financially supported by the Natural Science and Engineering Research Council of Canada(NSERC) with grant No.223079
文摘Haulage networks are vital to underground mining operations as they constitute the arteries through which blasted ore is transported to surface. In the sublevel stoping method and its variations, haulage drifts are excavated in advance near the ore block that will be mined out. Numerical modeling is a technique that is frequently employed to assess the redistribution of mining-induced stresses, and to compare the impact of different stope sequence scenarios on haulage network stability. In this study,typical geological settings in the Canadian Shield were replicated in a numerical model with a steeplydipping tabular orebody striking EW. All other formations trended in the same direction except for two dykes on either side of the orebody with a WNW-ESE strike. Rock mass properties and in situ stress measurements from a case study mine were used to calibrate the model. Drifts and crosscuts were excavated in the footwall and two stope sequence scenarios-a diminishing pillar and a center-out one-were implemented in 24 mining stages. A combined volumetric-numerical analysis was conducted for two active levels by comparing the extent of unstable rock mass at each stage using shear,compressive, and tensile instability criteria. Comparisons were made between the orebody and the host rock, between the footwall and hanging wall, and between the two stope sequence scenarios. It was determined that in general, the center-out option provided a larger volume of instability with the shear criterion when compared to the diminishing pillar one(625,477 m~3 compared to 586,774 m~3 in the orebody; 588 m~3 compared to 403 m~3 in the host rock). However, the reverse was true for tensile(134,298 m~3 compared to 128,834 m~3 in the orebody; 91,347 m~3 compared to 67,655 m~3 in the host rock)instability where the diminishing pillar option had the more voluminous share.
基金Projects(52034009, 51974319) supported by the National Natural Science Foundation of ChinaProject(2020JCB01) supported by the Yue Qi Distinguished Scholar Project of China。
文摘The time-dependent behaviors of coal and rocks were easily ignored. Besides, “three-stage” triaxial loading and unloading mechanics tests of sandstone were conducted based on the idea of the initial high in-situ stress state recovery according to the full-life cycle evolution characteristics of surrounding rocks in deep mines(pre-excavation,excavation and post-excavation). The time-dependent stress-strain curves of sandstone were obtained. Meanwhile, the deformation and strength fitting relationships with time of sandstone were also built. Furthermore, the dilatancy and volumetric recovery mechanical mechanisms of sandstone were revealed. The results showed that: 1) There were significant time-dependent evolution characteristics on the deformation and strength of sandstone;2) There were significant correlations among the internal friction angle, cohesion and the simulated depths;3) Volumetric recovery phenomenon of sandstone was observed for the first time, which mainly occurred at the simulated depth of 2000 m. The above research conclusions could provide a certain theoretical basis for the stability control of surrounding rocks in deep mines.
基金financially supported by the National Key R&D Program of China (Grants 2016YFB0100100, 2016YFA0200200)the National Natural Science Foundation of China (Grants 51702078, 51572259, and 51872283)+4 种基金Natural Science Foundation of Liaoning ProvinceJoint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Grant 20180510038)Liao Ning Revitalization Talents Program (Grant XLYC1807153), DICP (DICP ZZBS201708, DICP ZZBS201802)DICP&QIBEBT (Grant DICP&QIBEBT UN201702)Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL180310, DNL180308, DNL201912, and DNL201915)。
文摘Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration are highly necessary for the smart power sources-unitized electronics.Despite the great progress,the fabrication of MSCs combining high integration with high volumetric performance remains largely unsolved.Herein,we develop a simple,fast and scalable strategy to fabricate graphene based highly integrated MSCs by a new effective continuous centrifugal coating technique.Notably,the resulting highly conductive graphene films can act as not only patterned microelectrodes but also metal-free current collectors and interconnects,endowing modular MSCs with high integrity,remarkable flexibility,tailored voltage and capacitance output,and outstanding performance uniformity.More importantly,the strong centrifugal force and shear force generated in continuous centrifugal coating process lead to graphene films with high alignment,compactness and packing density,contributing to excellent volumetric capacitance of ~31.8 F cm^(-3) and volumetric energy density of ~2.8 mWh cm^(-3),exceeding most reported integrated MSCs.Therefore,our work paves a novel way for simple and scalable fabrication of integrated MSCs and offers promising opportunities as standalone microscale power sources for new-generation electronics.
文摘Volumetric fraction distribution measurement is a constituent part of process tomography system in oil-water-gas multiphase flow. With the technological development of nuclear radial inspection, dual-energy γ-ray techniques make it possible to investigate the concentration of the different components on the cross-section of oil-water-gas multiphase pipe-flow. The dual-energy gamma-ray technique is based on materials attenuation coefficients measurement comprised of two radioactive isotopes of 241Am and 241Cs which have emission energies at 59.5 keV and 662 keV in this project. Nuclear instruments and data acquisition system were designed to measure the material’s attenuation dose rate and a number of static tests were conducted at the Multiphase Laboratory, Institute of Mechanics, Chinese Academy of Sciences. Three phases of oil-water-gas media were inves- tigated for their possible use to simulate different media volumetric fraction distributions in experimental vessels. Attenuation intensities were measured, and the arithmetic of linear attenuation coefficients and the equations of volumetric fractions were studied. Investigation of an unexpected measurement error from attenuation equations revealed that a modified arithmetic was involved and finally the system achieved acceptable accuracy in experimental research.