期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Unveiling the decomposition mechanism of formic acid on Pd/WC(0001) surface by using density function theory 被引量:1
1
作者 Jinhua Zhang Yuanbin She 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期415-425,共11页
In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent per... In pursuit of low-cost direct formic acid fuel cells,tungsten carbide(WC)supported Pd catalyst is considered as an ideal candidate for efficient decomposition of formic acid due to low Pd utilization and excellent performance.Herein,different adsorption configurations and active sites of the intermediates,involved in the HCOOH decomposition,on WC(0001)-supported Pd monolayer(Pd/WC(0001))surface investigated by using density functional theory.The results reveal that trans-HCOOH,HCOO,cis-COOH,trans-COOH,HCO,CO,H2 O,OH and H exhibit chemisorption on Pd/WC(0001)surface,whereas cis-HCOOH and CO2 exhibit weak interactions with Pd/WC(0001)surface.In addition,the minimum energy pathways of HCOOH decomposition are analyzed to generate CO and CO2 due to the fracture of C–H,H–O and C–O bonds.The adsorbed HCOOH,HCOO,mH COO,cis-COOH and trans-COOH configurations exhibit dissociation rather than desorption.CO formation occurs through the decomposition of cis-COOH,trans-COOH and HCO,whereas the CO2 formation happens due to the decomposition of HCOO.It is found that the most favorable pathway for HCOOH decomposition on Pd/WC(0001)surface is HCOOH→HCOO→CO2,where the formation of CO2 from HCOO dehydrogenation determines the reaction rate.Overall,CO2 is the most dominant product of HCOOH decomposition on Pd/WC(0001)surface.The presence of WC,as monolayer Pd carrier,does not alter the catalytic behavior of Pd and significantly reduces the Pd utilization. 展开更多
关键词 Density functional theory Formic acid Direct formic acid fuel cells wc(0001)-supported pd monolayer Decomposition mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部