In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state pr...In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.展开更多
In this paper,a new multi-resolution weighted essentially non-oscillatory(MR-WENO)limiter for high-order local discontinuous Galerkin(LDG)method is designed for solving Navier-Stokes equations on triangular meshes.Thi...In this paper,a new multi-resolution weighted essentially non-oscillatory(MR-WENO)limiter for high-order local discontinuous Galerkin(LDG)method is designed for solving Navier-Stokes equations on triangular meshes.This MR-WENO limiter is a new extension of the finite volume MR-WENO schemes.Such new limiter uses information of the LDG solution essentially only within the troubled cell itself,to build a sequence of hierarchical L^(2)projection polynomials from zeroth degree to the highest degree of the LDGmethod.As an example,a third-order LDGmethod with associated same orderMR-WENO limiter has been developed in this paper,which could maintain the original order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near strong shocks or contact discontinuities.The linear weights of such new MR-WENO limiter can be any positive numbers on condition that their summation is one.This is the first time that a series of different degree polynomials within the troubled cell are applied in a WENO-type fashion to modify the freedom of degrees of the LDG solutions in the troubled cell.This MR-WENO limiter is very simple to construct,and can be easily implemented to arbitrary high-order accuracy and in higher dimensions on unstructured meshes.Such spatial reconstruction methodology improves the robustness in the numerical simulation on the same compact spatial stencil of the original LDG methods on triangular meshes.Some classical viscous examples are given to show the good performance of this third-order LDG method with associated MR-WENO limiter.展开更多
The arbitrary Lagrangian-Eulerian(ALE)method is widely used in the field of compressible multi-material and multi-phase flow problems.In order to implement the indirect ALE approach for the simulation of compressible ...The arbitrary Lagrangian-Eulerian(ALE)method is widely used in the field of compressible multi-material and multi-phase flow problems.In order to implement the indirect ALE approach for the simulation of compressible flow in the context of high order discontinuous Galerkin(DG)discretizations,we present a high order positivity-preserving DG remapping method based on a moving mesh solver in this paper.This remapping method is based on the ALE-DG method developed by Klingenberg et al.[17,18]to solve the trivial equation∂u/∂t=0 on a moving mesh,which is the old mesh before remapping at t=0 and is the new mesh after remapping at t=T.An appropriate selection of the final pseudo-time T can always satisfy the relatively mild smoothness requirement(Lipschitz continuity)on the mesh movement velocity,which guarantees the high order accuracy of the remapping procedure.We use a multi-resolution weighted essentially non-oscillatory(WENO)limiter which can keep the essentially non-oscillatory property near strong discontinuities while maintaining high order accuracy in smooth regions.We further employ an effective linear scaling limiter to preserve the positivity of the relevant physical variables without sacrificing conservation and the original high order accuracy.Numerical experiments are provided to illustrate the high order accuracy,essentially non-oscillatory performance and positivity-preserving of our remapping algorithm.In addition,the performance of the ALE simulation based on the DG framework with our remapping algorithm is examined in one-and two-dimensional Euler equations.展开更多
In this paper,we apply the discontinuous Galerkin method with LaxWendroff type time discretizations(LWDG)using the weighted essentially nonoscillatory(WENO)limiter to solve a multi-class traffic flow model for an inho...In this paper,we apply the discontinuous Galerkin method with LaxWendroff type time discretizations(LWDG)using the weighted essentially nonoscillatory(WENO)limiter to solve a multi-class traffic flow model for an inhomogeneous highway.This model is a kind of hyperbolic conservation law with spatially varying fluxes.The numerical scheme is based on a modified equivalent system which is written as a“standard”hyperbolic conservation form.Numerical experiments for both the Riemann problem and the traffic signal control problem are presented to show the effectiveness of the method.展开更多
基金supported by the NSFC Grant No.11872210 and Grant No.MCMS-I-0120G01Chi-Wang Shu:Research is supported by the AFOSR Grant FA9550-20-1-0055 and the NSF Grant DMS-2010107Jianxian Qiu:Research is supported by the NSFC Grant No.12071392.
文摘In this paper, we design high-order Runge-Kutta discontinuous Galerkin (RKDG) methods with multi-resolution weighted essentially non-oscillatory (multi-resolution WENO) limiters to compute compressible steady-state problems on triangular meshes. A troubled cell indicator extended from structured meshes to unstructured meshes is constructed to identify triangular cells in which the application of the limiting procedures is required. In such troubled cells, the multi-resolution WENO limiting methods are used to the hierarchical L^(2) projection polynomial sequence of the DG solution. Through using the RKDG methods with multi-resolution WENO limiters, the optimal high-order accuracy can be gradually reduced to first-order in the triangular troubled cells, so that the shock wave oscillations can be well suppressed. In steady-state simulations on triangular meshes, the numerical residual converges to near machine zero. The proposed spatial reconstruction methods enhance the robustness of classical DG methods on triangular meshes. The good results of these RKDG methods with multi-resolution WENO limiters are verified by a series of two-dimensional steady-state problems.
文摘In this paper,a new multi-resolution weighted essentially non-oscillatory(MR-WENO)limiter for high-order local discontinuous Galerkin(LDG)method is designed for solving Navier-Stokes equations on triangular meshes.This MR-WENO limiter is a new extension of the finite volume MR-WENO schemes.Such new limiter uses information of the LDG solution essentially only within the troubled cell itself,to build a sequence of hierarchical L^(2)projection polynomials from zeroth degree to the highest degree of the LDGmethod.As an example,a third-order LDGmethod with associated same orderMR-WENO limiter has been developed in this paper,which could maintain the original order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near strong shocks or contact discontinuities.The linear weights of such new MR-WENO limiter can be any positive numbers on condition that their summation is one.This is the first time that a series of different degree polynomials within the troubled cell are applied in a WENO-type fashion to modify the freedom of degrees of the LDG solutions in the troubled cell.This MR-WENO limiter is very simple to construct,and can be easily implemented to arbitrary high-order accuracy and in higher dimensions on unstructured meshes.Such spatial reconstruction methodology improves the robustness in the numerical simulation on the same compact spatial stencil of the original LDG methods on triangular meshes.Some classical viscous examples are given to show the good performance of this third-order LDG method with associated MR-WENO limiter.
基金supported in part by NSFC grant 12031001National Key R&D Program of China No.2023YFA1009003supported in part by NSF grant DMS-2010107.
文摘The arbitrary Lagrangian-Eulerian(ALE)method is widely used in the field of compressible multi-material and multi-phase flow problems.In order to implement the indirect ALE approach for the simulation of compressible flow in the context of high order discontinuous Galerkin(DG)discretizations,we present a high order positivity-preserving DG remapping method based on a moving mesh solver in this paper.This remapping method is based on the ALE-DG method developed by Klingenberg et al.[17,18]to solve the trivial equation∂u/∂t=0 on a moving mesh,which is the old mesh before remapping at t=0 and is the new mesh after remapping at t=T.An appropriate selection of the final pseudo-time T can always satisfy the relatively mild smoothness requirement(Lipschitz continuity)on the mesh movement velocity,which guarantees the high order accuracy of the remapping procedure.We use a multi-resolution weighted essentially non-oscillatory(WENO)limiter which can keep the essentially non-oscillatory property near strong discontinuities while maintaining high order accuracy in smooth regions.We further employ an effective linear scaling limiter to preserve the positivity of the relevant physical variables without sacrificing conservation and the original high order accuracy.Numerical experiments are provided to illustrate the high order accuracy,essentially non-oscillatory performance and positivity-preserving of our remapping algorithm.In addition,the performance of the ALE simulation based on the DG framework with our remapping algorithm is examined in one-and two-dimensional Euler equations.
基金supported by NSFC grant 10671091 and JSNSF BK2006511.
文摘In this paper,we apply the discontinuous Galerkin method with LaxWendroff type time discretizations(LWDG)using the weighted essentially nonoscillatory(WENO)limiter to solve a multi-class traffic flow model for an inhomogeneous highway.This model is a kind of hyperbolic conservation law with spatially varying fluxes.The numerical scheme is based on a modified equivalent system which is written as a“standard”hyperbolic conservation form.Numerical experiments for both the Riemann problem and the traffic signal control problem are presented to show the effectiveness of the method.