A general solution, including three arbitrary functions, is obtained for a (2~l)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued...A general solution, including three arbitrary functions, is obtained for a (2~l)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and the degenerated single folded solitary waves are investigated graphically and found to be completely elastic.展开更多
A general solution including three arbitrary functions is obtained for the (2+1)-dimensional higher-orderBroer-Kaup equation by means of WTC truncation method.Introducing proper multiple valued functions and Jacobiell...A general solution including three arbitrary functions is obtained for the (2+1)-dimensional higher-orderBroer-Kaup equation by means of WTC truncation method.Introducing proper multiple valued functions and Jacobielliptic functions in the seed solution,special types of periodic folded waves are derived.In long wave limit theseperiodic folded wave patterns may degenerate into single localized folded solitary wave excitations.The interactions ofthe periodic folded waves and their degenerated single folded solitary waves are investigated graphically and are foundto be completely elastic.展开更多
基金supported in part by National Natural Science Foundation of China (Grant No 10772110)
文摘A general solution, including three arbitrary functions, is obtained for a (2~l)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method. Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution, special types of periodic folded waves are derived. In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations. The interactions of the periodic folded waves and the degenerated single folded solitary waves are investigated graphically and found to be completely elastic.
基金National Natural Science Foundation of China under Grant Nos 10472063 and 10772110
文摘A general solution including three arbitrary functions is obtained for the (2+1)-dimensional higher-orderBroer-Kaup equation by means of WTC truncation method.Introducing proper multiple valued functions and Jacobielliptic functions in the seed solution,special types of periodic folded waves are derived.In long wave limit theseperiodic folded wave patterns may degenerate into single localized folded solitary wave excitations.The interactions ofthe periodic folded waves and their degenerated single folded solitary waves are investigated graphically and are foundto be completely elastic.