New mineralogical and bulk-rock geochemical data for the recently recognised Mesoproterozoic (ca. 1100 Ma) and late Cretaceous (ca. 90 Ma) kimberlites in the Timmasamudram cluster (TKC) of the Wajrakarur kimberl...New mineralogical and bulk-rock geochemical data for the recently recognised Mesoproterozoic (ca. 1100 Ma) and late Cretaceous (ca. 90 Ma) kimberlites in the Timmasamudram cluster (TKC) of the Wajrakarur kimberlite field (WKF), Eastern Dbarwar Craton, southern India, are presented. On the basis of groundmass mineral chemistry (phlogopite, spinel, perovskite and clinopyroxene), bulk-rock chem- istry (SiO2, K20, low TiO2, Ba/Nb and La/Sm), and perovskite Nd isotopic compositions, the TI(-1 (mac- rocrystic variety) and TI(-4 (Macrocrystic variety) kimberlites in this cluster are here classified as orangeites (i.e. Group II kimberlites), with geochemical characteristics that are very similar to orangeites previously described from the Bastar Craton in central India, as well as the Kaapvaal Craton in South Africa. The remaining kimberlites (e.g., TK-2, TK-3 and the TK-1 microcrystic variant), are more similar to other 1100 Ma, Group l-type kimberlites of the Eastern Dharwar Craton, as well as the typical Group I kimberlites of the Kaapvaal Craton. Through the application of geochemical modelling, based on pub- lished carbonated peridotite/melt trace element partition coefficients, we show that the generation of the TI(C kimberlites and the orangeites results from low degrees of partial melting of a metasomatised, carbonated peridotite. Depleted mantle (TDM) Nd perovskite model ages of the 1100 Ma Timmasamudram kimberlites show that the metasomatic enrichment of their source regions are broadly similar to that of the Meso- proterozoic kimberlites of the EDC. The younger, late Cretaceous (ca. 90 Ma) TI(-1 (macrocrystic variant) and TK-4 kimberlites, as well as the orangeites from the 8astar Craton, share similar Nd model ages of 1100 Ma, consistent with a similarity in the timing of source enrichment during the amalgamation of Rodinia supercontinent. The presence of late Cretaceous diamondiferous orangeite activity, presumably related to the location of the Marion hotspot in southern India at the time, suggests that thick lithosphere was preserved, at least locally, up to the late Cretaceous, and was not entirely destroyed during the breakup of Gondwana, as inferred by some recent geophvsical models.展开更多
Detailed mineralogy,bulk rock major,trace and Sr-Nd isotope compositions,and ^(40)Ar/^(39)Ar dating of the Pipe-8 diamondiferous ultramafic intrusion in the Wajrakarur cluster of southern India,is reported.Based on th...Detailed mineralogy,bulk rock major,trace and Sr-Nd isotope compositions,and ^(40)Ar/^(39)Ar dating of the Pipe-8 diamondiferous ultramafic intrusion in the Wajrakarur cluster of southern India,is reported.Based on the presence of Ti-rich phlogopite,high Na/K content in amphibole,Al-and Ti-rich diopside,a titanomagnetite trend in spinel and the presence of Ti-rich schorlomite garnet and carbonates in the groundmass,the Pipe-8 intrusion is here more precisely classified as an ultramafic lamprophyre(i.e.,aillikite).An aillikite affinity of the Pipe-8 intrusion is further supported by the bulk rock major and trace element and Sr-Nd isotope geochemistry.Sr-Nd isotope data are consistent with a common,moderately depleted upper mantle source region for both the Pipe-8 aillikite as well as the Wajrakarur kimberlites of southern India.A phlogopite-rich groundmass ^(40)Ar/^(39)Ar plateau age of 1115.8±7.9 Ma(2σ) for the Pipe-8 intrusion falls within a restricted 100 Ma time bracket as defined by the 1053-1155 Ma emplacement ages of kimberlites and related rocks in India.The presence of ultramafic lamprophyres,carbonatites,kimberlites,and olivine lamproites in the Wajrakarur kimberlite field requires low degrees of partial melting of contrasting metasomatic assemblages in a heterogeneous sub-continental lithospheric mantle.The widespread association of kimberlite and other mantle-derived magmatism during the Mesoproterozoic(ca.1.1 Ga) have been interpreted as being part of a single large igneous province comprising of the Kalahari,Australian,West Laurentian and Indian blocks of the Rodinia supercontinent that were in existence during its assembly.In India only kimberlite/lamproite/ultramafic lamprophyre magmatism occurred at this time without the associated large igneous provinces as seen in other parts of Rodinia.This may be because of the separated paleo-latitudinal position of India from Australia during the assembly of Rodinia.It is speculated that the presence of a large plume at or close to 1.1 Ga within the Rodinian supercontinent,with the Indian block located on its periphery,could be the reason for incipient melting of lithospheric mantle and the consequent emplacement of only kimberlites and other ultramafic,volatile rich rocks in India due to comparatively low thermal effects from the distant plume.展开更多
Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are p...Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The T_(Dm) Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.展开更多
基金financial support from the Department of Science and Technology,New Delhi,in the form of a major research project grant under the Fast Track Scheme for Young Scientists(No. SR/FTP/ES-175/2010)the Head,Department of Geology,Banaras Hindu University,DST-SERB(1R/S4/ESF-18/2013)+2 种基金New Delhi and Alexander von Humboldt Foundation,Germany,for supportthe National Research FoundationThe Centre of Excellence for Integrated Mineral and Energy Resource Analysis(CIMERA) at the University of Johannesburg
文摘New mineralogical and bulk-rock geochemical data for the recently recognised Mesoproterozoic (ca. 1100 Ma) and late Cretaceous (ca. 90 Ma) kimberlites in the Timmasamudram cluster (TKC) of the Wajrakarur kimberlite field (WKF), Eastern Dbarwar Craton, southern India, are presented. On the basis of groundmass mineral chemistry (phlogopite, spinel, perovskite and clinopyroxene), bulk-rock chem- istry (SiO2, K20, low TiO2, Ba/Nb and La/Sm), and perovskite Nd isotopic compositions, the TI(-1 (mac- rocrystic variety) and TI(-4 (Macrocrystic variety) kimberlites in this cluster are here classified as orangeites (i.e. Group II kimberlites), with geochemical characteristics that are very similar to orangeites previously described from the Bastar Craton in central India, as well as the Kaapvaal Craton in South Africa. The remaining kimberlites (e.g., TK-2, TK-3 and the TK-1 microcrystic variant), are more similar to other 1100 Ma, Group l-type kimberlites of the Eastern Dharwar Craton, as well as the typical Group I kimberlites of the Kaapvaal Craton. Through the application of geochemical modelling, based on pub- lished carbonated peridotite/melt trace element partition coefficients, we show that the generation of the TI(C kimberlites and the orangeites results from low degrees of partial melting of a metasomatised, carbonated peridotite. Depleted mantle (TDM) Nd perovskite model ages of the 1100 Ma Timmasamudram kimberlites show that the metasomatic enrichment of their source regions are broadly similar to that of the Meso- proterozoic kimberlites of the EDC. The younger, late Cretaceous (ca. 90 Ma) TI(-1 (macrocrystic variant) and TK-4 kimberlites, as well as the orangeites from the 8astar Craton, share similar Nd model ages of 1100 Ma, consistent with a similarity in the timing of source enrichment during the amalgamation of Rodinia supercontinent. The presence of late Cretaceous diamondiferous orangeite activity, presumably related to the location of the Marion hotspot in southern India at the time, suggests that thick lithosphere was preserved, at least locally, up to the late Cretaceous, and was not entirely destroyed during the breakup of Gondwana, as inferred by some recent geophvsical models.
文摘Detailed mineralogy,bulk rock major,trace and Sr-Nd isotope compositions,and ^(40)Ar/^(39)Ar dating of the Pipe-8 diamondiferous ultramafic intrusion in the Wajrakarur cluster of southern India,is reported.Based on the presence of Ti-rich phlogopite,high Na/K content in amphibole,Al-and Ti-rich diopside,a titanomagnetite trend in spinel and the presence of Ti-rich schorlomite garnet and carbonates in the groundmass,the Pipe-8 intrusion is here more precisely classified as an ultramafic lamprophyre(i.e.,aillikite).An aillikite affinity of the Pipe-8 intrusion is further supported by the bulk rock major and trace element and Sr-Nd isotope geochemistry.Sr-Nd isotope data are consistent with a common,moderately depleted upper mantle source region for both the Pipe-8 aillikite as well as the Wajrakarur kimberlites of southern India.A phlogopite-rich groundmass ^(40)Ar/^(39)Ar plateau age of 1115.8±7.9 Ma(2σ) for the Pipe-8 intrusion falls within a restricted 100 Ma time bracket as defined by the 1053-1155 Ma emplacement ages of kimberlites and related rocks in India.The presence of ultramafic lamprophyres,carbonatites,kimberlites,and olivine lamproites in the Wajrakarur kimberlite field requires low degrees of partial melting of contrasting metasomatic assemblages in a heterogeneous sub-continental lithospheric mantle.The widespread association of kimberlite and other mantle-derived magmatism during the Mesoproterozoic(ca.1.1 Ga) have been interpreted as being part of a single large igneous province comprising of the Kalahari,Australian,West Laurentian and Indian blocks of the Rodinia supercontinent that were in existence during its assembly.In India only kimberlite/lamproite/ultramafic lamprophyre magmatism occurred at this time without the associated large igneous provinces as seen in other parts of Rodinia.This may be because of the separated paleo-latitudinal position of India from Australia during the assembly of Rodinia.It is speculated that the presence of a large plume at or close to 1.1 Ga within the Rodinian supercontinent,with the Indian block located on its periphery,could be the reason for incipient melting of lithospheric mantle and the consequent emplacement of only kimberlites and other ultramafic,volatile rich rocks in India due to comparatively low thermal effects from the distant plume.
基金New Delhi sanctioned a major research project(IR/S4/ESF-18/2011 dated 12.11.2013)to NVCR which made this research possibleDST-SERB for financial assistance in the form of a research scientist. AS acknowledges CSIR for awarding JRF(NET)
文摘Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The T_(Dm) Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.