针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统...针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。展开更多
WIFI位置指纹定位作为目前常见的室内定位方法,存在接收信号强度(received signal strength,RSS)波动和时变等问题,导致定位精度不高。文章为此设计了一种采用结合卡尔曼滤波的方差修正加权K最近邻(weighted K-nearest neighbor,WKNN)...WIFI位置指纹定位作为目前常见的室内定位方法,存在接收信号强度(received signal strength,RSS)波动和时变等问题,导致定位精度不高。文章为此设计了一种采用结合卡尔曼滤波的方差修正加权K最近邻(weighted K-nearest neighbor,WKNN)算法的室内定位方法。离线阶段,经过卡尔曼滤波后,选择数据的方差和均值作为反映RSS变化的特征值;在线阶段,通过采集的信号均值计算近似方差,对欧式距离进行权重修正,最后选择K个最近邻点确定待定点位置。实验结果表明:该文采用的定位方法平均定位精度达到1.248 m,相比于传统的WKNN室内定位方法,平均定位精度提升了20.3%;对比K-均值聚类结合动态加权K最近邻算法(K-means-EWKNN),平均定位精度提升了8.9%。展开更多
针对接收信号强度指示(Received Signal Strength Indication,RSSI)时变现象影响WLAN室内定位精度问题进行了研究,提出了一种基于RSSI概率统计分布(Statistical Probability Distribution,SPD)的加权K最近邻(Weighted K-Nearest Neighbo...针对接收信号强度指示(Received Signal Strength Indication,RSSI)时变现象影响WLAN室内定位精度问题进行了研究,提出了一种基于RSSI概率统计分布(Statistical Probability Distribution,SPD)的加权K最近邻(Weighted K-Nearest Neighbor,WKNN)方法——SPD-WKNN方法。该方法首先利用SPD方法得到指纹点RSSI向量区间;然后运用SVM算法选取测试点K个近邻指纹点,计算测试点RSSI向量到每个近邻指纹点的最小欧氏距离;最后结合WKNN算法获取定位结果。实验结果表明,SPD-WKNN方法与NN、KNN、WKNN、SVR和LSSVM方法相比定位误差分别降低了47.3%、41.6%、31.9%、27.1%和16.3%,呈现了良好的定位效果;利用SVM算法的稀疏性明显减小了运算时间。展开更多
针对室内定位指纹数据库更新成本过高的问题,设计了一种通过区域划分进行局部更新指纹数据库的RFID(Radio Frequency Identification,射频识别技术)室内定位算法。该算法通过聚类算法将指纹地图分成若干个子区域,每个子区域选取一个代...针对室内定位指纹数据库更新成本过高的问题,设计了一种通过区域划分进行局部更新指纹数据库的RFID(Radio Frequency Identification,射频识别技术)室内定位算法。该算法通过聚类算法将指纹地图分成若干个子区域,每个子区域选取一个代表点代表该子区域的指纹有效性,通过检测代表点的有效性来选择加权k近邻算法(Weighted k-Nearest Neighbor,WkNN)定位或子区域数据库的局部更新。实验结果表明,该算法在低成本的条件下极大限度地提高了定位精度和长期定位稳定性。展开更多
Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the est...Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).展开更多
Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate es...Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate estimation method, land managers might end up with incorrect biomass estimate maps, which could lead them to make poorer decisions in their future management plans. The goal of this study was to compare various imputation methods to predict forest biomass and basal area, at a project planning scale (a combination of ground inventory plots, light detection and ranging (LiDAR) data, satellite imagery, and climate data was analyzed, and their root mean square error (RMSE) and bias were calculated. Results indicate that for biomass prediction, the k-nn (k = 5) had the lowest RMSE and least amount of bias. The second most accurate method consisted of the k-nn (k = 3), followed by the GWR model, and the random forest imputation. For basal area prediction, the GWR model had the lowest RMSE and least amount of bias. The second most accurate method was k-nn (k = 5), followed by k-nn (k = 3), and the random forest method. For both metrics, the GNN method was the least accurate based on the ranking of RMSE and bias.展开更多
文摘针对基于RSSI和CSI的指纹定位技术易受环境干扰、定位精度较低的问题,提出了一种基于RSSI指纹和相位修正信道状态信息(phase correct based channel state information,PC-CSI)指纹的加权融合指纹定位技术。基于PC-CSI的指纹定位在传统基于CSI幅值的指纹定位基础上增加相位信息对定位结果进行修正,之后对RSSI指纹和PC-CSI指纹的定位结果加权重定位。实验结果表明,提出的加权融合指纹定位算法与基于CSI的主动定位算法相比,平均定位误差(mean position error,MPE)降低了36.2%,能满足室内定位需求。
文摘针对接收信号强度指示(Received Signal Strength Indication,RSSI)时变现象影响WLAN室内定位精度问题进行了研究,提出了一种基于RSSI概率统计分布(Statistical Probability Distribution,SPD)的加权K最近邻(Weighted K-Nearest Neighbor,WKNN)方法——SPD-WKNN方法。该方法首先利用SPD方法得到指纹点RSSI向量区间;然后运用SVM算法选取测试点K个近邻指纹点,计算测试点RSSI向量到每个近邻指纹点的最小欧氏距离;最后结合WKNN算法获取定位结果。实验结果表明,SPD-WKNN方法与NN、KNN、WKNN、SVR和LSSVM方法相比定位误差分别降低了47.3%、41.6%、31.9%、27.1%和16.3%,呈现了良好的定位效果;利用SVM算法的稀疏性明显减小了运算时间。
文摘针对室内定位指纹数据库更新成本过高的问题,设计了一种通过区域划分进行局部更新指纹数据库的RFID(Radio Frequency Identification,射频识别技术)室内定位算法。该算法通过聚类算法将指纹地图分成若干个子区域,每个子区域选取一个代表点代表该子区域的指纹有效性,通过检测代表点的有效性来选择加权k近邻算法(Weighted k-Nearest Neighbor,WkNN)定位或子区域数据库的局部更新。实验结果表明,该算法在低成本的条件下极大限度地提高了定位精度和长期定位稳定性。
文摘Consider the regression model Y=Xβ+ g(T) + e. Here g is an unknown smoothing function on [0, 1], β is a l-dimensional parameter to be estimated, and e is an unobserved error. When data are randomly censored, the estimators βn* and gn*forβ and g are obtained by using class K and the least square methods. It is shown that βn* is asymptotically normal and gn* achieves the convergent rate O(n-1/3).
文摘Various methods have been used to estimate the amount of above ground forest biomass across landscapes and to create biomass maps for specific stands or pixels across ownership or project areas. Without an accurate estimation method, land managers might end up with incorrect biomass estimate maps, which could lead them to make poorer decisions in their future management plans. The goal of this study was to compare various imputation methods to predict forest biomass and basal area, at a project planning scale (a combination of ground inventory plots, light detection and ranging (LiDAR) data, satellite imagery, and climate data was analyzed, and their root mean square error (RMSE) and bias were calculated. Results indicate that for biomass prediction, the k-nn (k = 5) had the lowest RMSE and least amount of bias. The second most accurate method consisted of the k-nn (k = 3), followed by the GWR model, and the random forest imputation. For basal area prediction, the GWR model had the lowest RMSE and least amount of bias. The second most accurate method was k-nn (k = 5), followed by k-nn (k = 3), and the random forest method. For both metrics, the GNN method was the least accurate based on the ranking of RMSE and bias.