Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equ...Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data.展开更多
This paper presents a well-balanced two-dimensional (2D) finite volume model to simulate the propagation, runup and rundown of long wave. Non-staggered grid is adopted to discretize the governing equation and the inte...This paper presents a well-balanced two-dimensional (2D) finite volume model to simulate the propagation, runup and rundown of long wave. Non-staggered grid is adopted to discretize the governing equation and the intercell flux is computed using a central upwind scheme, which is a Riemann-problem-solver-free method for hyperbolic conservation laws. The nonnegative reconstruction method for water depth is implemented in the present model to treat the appearance of wet/dry fronts, and the friction term is solved by a semi-implicit scheme to ensure the stability of the model. The Euler method is applied to update flow variable to the new time level. The model is verified against two experimental cases and good agreements are observed between numerical results and observed data.展开更多
In this article,we develop a new well-balanced finite volume central weighted essentially non-oscillatory(CWENO)scheme for one-and two-dimensional shallow water equations over uneven bottom.The well-balanced property ...In this article,we develop a new well-balanced finite volume central weighted essentially non-oscillatory(CWENO)scheme for one-and two-dimensional shallow water equations over uneven bottom.The well-balanced property is of paramount importance in practical applications,where many studied phenomena can be regarded as small perturbations to the steady state.To achieve the well-balanced property,we construct numerical fluxes by means of a decomposition algorithm based on a novel equilibrium preserving reconstruction procedure and we avoid applying the traditional hydrostatic reconstruction technique accordingly.This decomposition algorithm also helps us realize a simple source term discretization.Both rigorous theoretical analysis and extensive numerical examples all verify that the proposed scheme maintains the well-balanced property exactly.Furthermore,extensive numerical results strongly suggest that the resulting scheme can accurately capture small perturbations to the steady state and keep the genuine high-order accuracy for smooth solutions at the same time.展开更多
This paper aims to present a new well-balanced,accurate and fast finite volume scheme on unstructured grids to solve hyperbolic conservation laws.It is a scheme that combines both finite volume approach and characteri...This paper aims to present a new well-balanced,accurate and fast finite volume scheme on unstructured grids to solve hyperbolic conservation laws.It is a scheme that combines both finite volume approach and characteristic method.In this study,we consider a shallow water system with Coriolis effect and bottom friction stresses where this new Finite Volume Characteristics(FVC)scheme has been applied.The physical and mathematical properties of the system,including the C-property,have been well preserved.First,we developed this approach by preserving the advantages of the finite volume discretization such as conservation property and the method of characteristics,in order to avoid Riemann solvers and to enhance the accuracy without any complexity of the MUSCL reconstruction.Afterward,a discretization was applied to the bottom source term that leads to a well-balanced scheme satisfying the steady-state condition of still water.A semi-implicit treatment will also be presented in this study to avoid stability problems due to source terms.Finally,the proposed finite volume method is verified on several benchmark tests and shows good agreement with analytical solutions and experimental results;moreover,it gives a noteworthy accuracy and rapidity improvement compared to the original approaches.展开更多
We present an extension of the flux globalization based well-balanced pathconservative central-upwind scheme to the one-and two-dimensional thermal rotating shallow water equations.The scheme is well-balanced in the s...We present an extension of the flux globalization based well-balanced pathconservative central-upwind scheme to the one-and two-dimensional thermal rotating shallow water equations.The scheme is well-balanced in the sense that it can exactly preserve a variety of physically relevant steady states.In the one-dimensional case,it can preserve different“lake-at-rest”equilibria,thermo-geostrophic equilibria,as well as general moving-water steady states.In the two-dimensional case,preserving general moving-water steady states is difficult,and to the best of our knowledge,none of existing schemes can achieve this ultimate goal.The proposed scheme can exactly preserve the x-and y-directional jets in the rotational frame as well as certain genuinely two-dimensional equilibria.Furthermore,our approach employs a path-conservative technique for discretizing nonconservative product terms,which are incorporated into the global fluxes.This allows the developed scheme to exactly preserve some of the discontinuous steady states as well.We provide a number of numerical examples to demonstrate the advantages of the proposed scheme over some alternative finitevolume methods.展开更多
This paper presents an improved well-balanced Godunov-type 2-D finite volume model with structured grids to simulate shallow flows with wetting and drying fronts over an irregular topography. The intercell flux is com...This paper presents an improved well-balanced Godunov-type 2-D finite volume model with structured grids to simulate shallow flows with wetting and drying fronts over an irregular topography. The intercell flux is computed using a central upwind scheme, which is a Riemann-problem-solver-free method for hyperbolic conservation laws. The nonnegative reconstruction method for the water depth is implemented to resolve the stationary or wet/dry fronts. The bed slope source term is discretized using a central difference method to capture the static flow state over the irregular topography. Second-order accuracy in space is achieved by using the slope limited linear reconstruction method. With the proposed method, the model can avoid the partially wetting/drying cell problem and maintain the mass conservation. The proposed model is tested and verified against three theoretical benchmark tests and two experimental dam break flows. Further, the model is applied to predict the maximum water level and the flood arrival time at different gauge points for the Malpasset dam break event. The predictions agree well with the numerical results and the measurement data published in literature, which demonstrates that with the present model, a well-balanced state can be achieved and the water depth can be nonnegative when the Courant number is kept less than 0.25.展开更多
In this paper,we propose a high-order accurate discontinuous Galerkin(DG)method for the compressible Euler equations under gravitationalfields on un-structured meshes.The scheme preserves a general hydrostatic equilib...In this paper,we propose a high-order accurate discontinuous Galerkin(DG)method for the compressible Euler equations under gravitationalfields on un-structured meshes.The scheme preserves a general hydrostatic equilibrium state and provably guarantees the positivity of density and pressure at the same time.Compar-ing with the work on the well-balanced scheme for Euler equations with gravitation on rectangular meshes,the extension to triangular meshes is conceptually plausible but highly nontrivial.Wefirst introduce a special way to recover the equilibrium state and then design a group of novel variables at the interface of two adjacent cells,which plays an important role in the well-balanced and positivity-preserving properties.One main challenge is that the well-balanced schemes may not have the weak positivity property.In order to achieve the well-balanced and positivity-preserving properties simultaneously while maintaining high-order accuracy,we carefully design DG spa-tial discretization with well-balanced numericalfluxes and suitable source term ap-proximation.For the ideal gas,we prove that the resulting well-balanced scheme,cou-pled with strong stability preserving time discretizations,satisfies a weak positivity property.A simple existing limiter can be applied to enforce the positivity-preserving property,without losing high-order accuracy and conservation.Extensive one-and two-dimensional numerical examples demonstrate the desired properties of the pro-posed scheme,as well as its high resolution and robustness.展开更多
A well-balanced second order finite volume central scheme for the magnetohydrodynamic(MHD)equations with gravitational source term is developed in this paper.The scheme is an unstaggered central scheme that evolves th...A well-balanced second order finite volume central scheme for the magnetohydrodynamic(MHD)equations with gravitational source term is developed in this paper.The scheme is an unstaggered central scheme that evolves the numerical solution on a single grid and avoids solving Riemann problems at the cell interfaces using ghost staggered cells.A subtraction technique is used on the conservative variables with the support of a known steady state in order to manifest the well-balanced property of the scheme.The divergence-free constraint of themagnetic field is satisfied after applying the constrained transport method(CTM)for unstaggered central schemes at the end of each time-step by correcting the components of the magnetic field.The robustness of the proposed scheme is verified on a list of numerical test cases from the literature.展开更多
A well-balanced Runge-Kutta discontinuous Galerkin method is presented for the numerical solution of multilayer shallow water equations with mass exchange and non-flat bottom topography.The governing equations are refo...A well-balanced Runge-Kutta discontinuous Galerkin method is presented for the numerical solution of multilayer shallow water equations with mass exchange and non-flat bottom topography.The governing equations are reformulated as a non-linear system of conservation laws with differential source forces and reaction terms.Coupling between theflow layers is accounted for in the system using a set of ex-change relations.The considered well-balanced Runge-Kutta discontinuous Galerkin method is a locally conservativefinite element method whose approximate solutions are discontinuous across the inter-element boundaries.The well-balanced property is achieved using a special discretization of source terms that depends on the nature of hydrostatic solutions along with the Gauss-Lobatto-Legendre nodes for the quadra-ture used in the approximation of source terms.The method can also be viewed as a high-order version of upwindfinite volume solvers and it offers attractive features for the numerical solution of conservation laws for which standardfinite element methods fail.To deal with the source terms we also implement a high-order splitting operator for the time integration.The accuracy of the proposed Runge-Kutta discontinuous Galerkin method is examined for several examples of multilayer free-surfaceflows over bothflat and non-flat beds.The performance of the method is also demonstrated by comparing the results obtained using the proposed method to those obtained using the incompressible hydrostatic Navier-Stokes equations and a well-established kinetic method.The proposed method is also applied to solve a recirculationflow problem in the Strait of Gibraltar.展开更多
It is well known that developing well-balanced schemes for the balance laws is useful for reducing numerical errors.In this paper,a well-balanced weighted compact nonlinear scheme(WCNS)is proposed for shallow water eq...It is well known that developing well-balanced schemes for the balance laws is useful for reducing numerical errors.In this paper,a well-balanced weighted compact nonlinear scheme(WCNS)is proposed for shallow water equations in prebalanced forms.The scheme is proved to be well-balanced provided that the source term is treated appropriately as the advection term.Some numerical examples in oneand two-dimensions are also presented to demonstrate the well-balanced property,high order accuracy and good shock capturing capability of the proposed scheme.展开更多
The blood flow model admits the steady state,in which the flux gradient is non-zero and is exactly balanced by the source term.In this paper,we present a high order well-balanced finite difference weighted essentially...The blood flow model admits the steady state,in which the flux gradient is non-zero and is exactly balanced by the source term.In this paper,we present a high order well-balanced finite difference weighted essentially non-oscillatory(WENO)scheme,which exactly preserves the steady state.In order to maintain the wellbalanced property,we propose to reformulate the equation and apply a novel source term approximation.Extensive numerical experiments are carried out to verify the performances of the current scheme such as the maintenance of well-balanced property,the ability to capture the perturbations of such steady state and the genuine high order accuracy for smooth solutions.展开更多
Equilibrium or stationary solutions usually proceed through the exact balance between hyperbolic transport terms and source terms. Such equilibrium solutions are affected by truncation errors that prevent any classica...Equilibrium or stationary solutions usually proceed through the exact balance between hyperbolic transport terms and source terms. Such equilibrium solutions are affected by truncation errors that prevent any classical numerical scheme from capturing the evolution of small amplitude waves of physical significance. In order to overcome this problem, we compare two commonly adopted strategies: going to very high order and reduce drastically the truncation errors on the equilibrium solution, or design a specific scheme that preserves by construction the equilibrium exactly, the so-called well-balanced approach. We present a modern numerical implementation of these two strategies and compare them in details, using hydrostatic but also dynamical equilibrium solutions of several simple test cases. Finally, we apply our methodology to the simulation of a protoplanetary disc in centrifugal equilibrium around its star and model its interaction with an embedded planet, illustrating in a realistic application the strength of both methods.展开更多
In this work,we present a high-order discontinuous Galerkin method for the shallow water equations incorporating horizontal temperature gradients(also known as the Ripa model),which exactly maintains the lake at rest ...In this work,we present a high-order discontinuous Galerkin method for the shallow water equations incorporating horizontal temperature gradients(also known as the Ripa model),which exactly maintains the lake at rest steady state.Herein,we propose original numerical fluxes defined on the basis of the hydrostatic reconstruction idea and a simple source term approximation.This novel approach allows us to achieve the well-balancing of the discontinuous Galerkin method without complication.Moreover,the proposed method retains genuinely high-order accuracy for smooth solutions and it shows good resolution for discontinuous solutions at the same time.Rigorous numerical analysis as well as extensive numerical results all verify the good performances of the proposed method.展开更多
Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do ...Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.展开更多
A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The e...A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The exact C-property is investigated,and comparison with the standard finite difference WENO scheme is made.Theoretical derivation and numerical results show that the proposed finite difference WENO scheme can maintain the exact C-property on both stationarily and dynamically generalized coordinate systems.The Harten-Lax-van Leer type flux is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems,indicating smaller errors compared with the Lax-Friedrichs solver.In addition,we propose a positivity-preserving limiter on stationary meshes such that the scheme can preserve the non-negativity of the water height without loss of mass conservation.展开更多
为精确模拟浅水波非线性演化过程中的动边界,提出一种基于位移的Hamilton变分原理,并进而导出一种基于位移的浅水方程(Shallow Water Equation based on Displacement,SWE-D).SWE-D以位移为基本未知量,可以精确满足动边界处的零水深要...为精确模拟浅水波非线性演化过程中的动边界,提出一种基于位移的Hamilton变分原理,并进而导出一种基于位移的浅水方程(Shallow Water Equation based on Displacement,SWE-D).SWE-D以位移为基本未知量,可以精确满足动边界处的零水深要求并精确捕捉动态边界位置,且解具有协调性.在Hamilton变分原理的框架下,分别采用有限元和保辛积分算法对该浅水方程进行空间离散和时间积分,可有效地处理不平水底情况,保证对非线性演化进行长时间仿真的精度.数值算例表明该方法适用于浅水动边界问题的数值模拟.展开更多
One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approache...One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approaches to enhancing the understanding of the flood events.The computational domain of this flood is over 9460 km2 and about 3.784 × 106 cells are involved as a 50 m × 50 m mesh is used,which necessitates a computationally efficient model.Here the Open MP(Open Multiprocessing) technique is adopted to parallelize the code of a coupled 2D hydrodynamic and sediment transport model.It is shown that the computational efficiency is enhanced by over 80% due to the parallelization.The floods over both fixed and mobile beds are well reproduced with specified discharge hydrographs at the dam site.Qualitatively,backwater effects during the flood are resolved at the bifurcation between the Chuja and Katun rivers.Quantitatively,the computed maximum stage and thalweg are physically consistent with the field data of the bars and deposits.The effects of sediment transport and morphological evolution on the flood are considerable.Sensitivity analyses indicate that the impact of the peak discharge is significant,whilst those of the Manningroughness,medium sediment size and shape of the inlet discharge hydrograph are marginal.展开更多
We construct new HLL-type moving-water equilibria preserving upwind schemes for the one-dimensional Saint-Venant system of shallow water equations with nonflat bottom topography.The designed first-and secondorder sche...We construct new HLL-type moving-water equilibria preserving upwind schemes for the one-dimensional Saint-Venant system of shallow water equations with nonflat bottom topography.The designed first-and secondorder schemes are tested on a number of numerical examples,in which we verify the well-balanced property as well as the ability of the proposed schemes to accurately capture small perturbations of moving-water steady states.展开更多
基金supported by the Spanish MICINN project MTM2013-43745-R and MTM2017-86459-Rthe Xunta de Galicia+1 种基金the FEDER under research project ED431C 2017/60-014supported by PRODEP project UAM-PTC-669
文摘Sediment transport can be modelled using hydrodynamic models based on shallow water equations coupled with the sediment concentration conservation equation and the bed con-servation equation.The complete system of equations is made up of the energy balance law and the Exner equations.The numerical solution for this complete system is done in a seg-regated manner.First,the hyperbolic part of the system of balance laws is solved using a finite volume scheme.Three ways to compute the numerical flux have been considered,the Q-scheme of van Leer,the HLLCS approximate Riemann solver,and the last one takes into account the presence of non-conservative products in the model.The discretisation of the source terms is carried out according to the numerical flux chosen.In the second stage,the bed conservation equation is solved by using the approximation computed for the system of balance laws.The numerical schemes have been validated making comparisons between the obtained numerical results and the experimental data for some physical experiments.The numerical results show a good agreement with the experimental data.
文摘This paper presents a well-balanced two-dimensional (2D) finite volume model to simulate the propagation, runup and rundown of long wave. Non-staggered grid is adopted to discretize the governing equation and the intercell flux is computed using a central upwind scheme, which is a Riemann-problem-solver-free method for hyperbolic conservation laws. The nonnegative reconstruction method for water depth is implemented in the present model to treat the appearance of wet/dry fronts, and the friction term is solved by a semi-implicit scheme to ensure the stability of the model. The Euler method is applied to update flow variable to the new time level. The model is verified against two experimental cases and good agreements are observed between numerical results and observed data.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021MA072)supported by the Natural Science Foundation of China(Grant No.11771228)+1 种基金supported by the Qinglan Project of Jiangsu Province,the XJTLU research enhancement fund(No.REF-18-01-04)the Key Programme Special Fund(KSF)in XJTLU(Nos.KSF-E-32 and KSF-E-21).
文摘In this article,we develop a new well-balanced finite volume central weighted essentially non-oscillatory(CWENO)scheme for one-and two-dimensional shallow water equations over uneven bottom.The well-balanced property is of paramount importance in practical applications,where many studied phenomena can be regarded as small perturbations to the steady state.To achieve the well-balanced property,we construct numerical fluxes by means of a decomposition algorithm based on a novel equilibrium preserving reconstruction procedure and we avoid applying the traditional hydrostatic reconstruction technique accordingly.This decomposition algorithm also helps us realize a simple source term discretization.Both rigorous theoretical analysis and extensive numerical examples all verify that the proposed scheme maintains the well-balanced property exactly.Furthermore,extensive numerical results strongly suggest that the resulting scheme can accurately capture small perturbations to the steady state and keep the genuine high-order accuracy for smooth solutions at the same time.
基金supported by the HPC Project Alkhwarizmi department,MSDA-UM6P.
文摘This paper aims to present a new well-balanced,accurate and fast finite volume scheme on unstructured grids to solve hyperbolic conservation laws.It is a scheme that combines both finite volume approach and characteristic method.In this study,we consider a shallow water system with Coriolis effect and bottom friction stresses where this new Finite Volume Characteristics(FVC)scheme has been applied.The physical and mathematical properties of the system,including the C-property,have been well preserved.First,we developed this approach by preserving the advantages of the finite volume discretization such as conservation property and the method of characteristics,in order to avoid Riemann solvers and to enhance the accuracy without any complexity of the MUSCL reconstruction.Afterward,a discretization was applied to the bottom source term that leads to a well-balanced scheme satisfying the steady-state condition of still water.A semi-implicit treatment will also be presented in this study to avoid stability problems due to source terms.Finally,the proposed finite volume method is verified on several benchmark tests and shows good agreement with analytical solutions and experimental results;moreover,it gives a noteworthy accuracy and rapidity improvement compared to the original approaches.
基金supported in part by China Postdoctoral Science Foundation(No.2022M721481)The work of A.Kurganov was supported in part by NSFC grant 12171226 and by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)The work of Y.Liu was supported in part by SNFS grants 200020204917 and FZEB-0-166980.
文摘We present an extension of the flux globalization based well-balanced pathconservative central-upwind scheme to the one-and two-dimensional thermal rotating shallow water equations.The scheme is well-balanced in the sense that it can exactly preserve a variety of physically relevant steady states.In the one-dimensional case,it can preserve different“lake-at-rest”equilibria,thermo-geostrophic equilibria,as well as general moving-water steady states.In the two-dimensional case,preserving general moving-water steady states is difficult,and to the best of our knowledge,none of existing schemes can achieve this ultimate goal.The proposed scheme can exactly preserve the x-and y-directional jets in the rotational frame as well as certain genuinely two-dimensional equilibria.Furthermore,our approach employs a path-conservative technique for discretizing nonconservative product terms,which are incorporated into the global fluxes.This allows the developed scheme to exactly preserve some of the discontinuous steady states as well.We provide a number of numerical examples to demonstrate the advantages of the proposed scheme over some alternative finitevolume methods.
基金Project supported by Natural Science Foundation of Zhejiang Province(Grant No.LR16E090001)the Research Funding of Shenzhen City(Grant No.JCYJ20160425164642646)the Zhejiang Province Science and Technology Research Funding(Grant No.2015C03015)
文摘This paper presents an improved well-balanced Godunov-type 2-D finite volume model with structured grids to simulate shallow flows with wetting and drying fronts over an irregular topography. The intercell flux is computed using a central upwind scheme, which is a Riemann-problem-solver-free method for hyperbolic conservation laws. The nonnegative reconstruction method for the water depth is implemented to resolve the stationary or wet/dry fronts. The bed slope source term is discretized using a central difference method to capture the static flow state over the irregular topography. Second-order accuracy in space is achieved by using the slope limited linear reconstruction method. With the proposed method, the model can avoid the partially wetting/drying cell problem and maintain the mass conservation. The proposed model is tested and verified against three theoretical benchmark tests and two experimental dam break flows. Further, the model is applied to predict the maximum water level and the flood arrival time at different gauge points for the Malpasset dam break event. The predictions agree well with the numerical results and the measurement data published in literature, which demonstrates that with the present model, a well-balanced state can be achieved and the water depth can be nonnegative when the Courant number is kept less than 0.25.
基金support of the China Scholarship Council(CSC NO.201906340196)supported by the NSF grant DMS-1753581+2 种基金Research of Y.Xia is supported by NSFC grant No.11871449Research of Y.Xu is supported by National Numerical Wind tunnel Project NNW2019ZT4-B08NSFC grant No.12071455,11722112.
文摘In this paper,we propose a high-order accurate discontinuous Galerkin(DG)method for the compressible Euler equations under gravitationalfields on un-structured meshes.The scheme preserves a general hydrostatic equilibrium state and provably guarantees the positivity of density and pressure at the same time.Compar-ing with the work on the well-balanced scheme for Euler equations with gravitation on rectangular meshes,the extension to triangular meshes is conceptually plausible but highly nontrivial.Wefirst introduce a special way to recover the equilibrium state and then design a group of novel variables at the interface of two adjacent cells,which plays an important role in the well-balanced and positivity-preserving properties.One main challenge is that the well-balanced schemes may not have the weak positivity property.In order to achieve the well-balanced and positivity-preserving properties simultaneously while maintaining high-order accuracy,we carefully design DG spa-tial discretization with well-balanced numericalfluxes and suitable source term ap-proximation.For the ideal gas,we prove that the resulting well-balanced scheme,cou-pled with strong stability preserving time discretizations,satisfies a weak positivity property.A simple existing limiter can be applied to enforce the positivity-preserving property,without losing high-order accuracy and conservation.Extensive one-and two-dimensional numerical examples demonstrate the desired properties of the pro-posed scheme,as well as its high resolution and robustness.
基金the National Council for Scientific Research of Lebanon(CNRS-L)for granting a doctoral fellowship to Farah Kanbarfunding by theQualification Programof the Julius Maximilians University Wurzburg.
文摘A well-balanced second order finite volume central scheme for the magnetohydrodynamic(MHD)equations with gravitational source term is developed in this paper.The scheme is an unstaggered central scheme that evolves the numerical solution on a single grid and avoids solving Riemann problems at the cell interfaces using ghost staggered cells.A subtraction technique is used on the conservative variables with the support of a known steady state in order to manifest the well-balanced property of the scheme.The divergence-free constraint of themagnetic field is satisfied after applying the constrained transport method(CTM)for unstaggered central schemes at the end of each time-step by correcting the components of the magnetic field.The robustness of the proposed scheme is verified on a list of numerical test cases from the literature.
文摘A well-balanced Runge-Kutta discontinuous Galerkin method is presented for the numerical solution of multilayer shallow water equations with mass exchange and non-flat bottom topography.The governing equations are reformulated as a non-linear system of conservation laws with differential source forces and reaction terms.Coupling between theflow layers is accounted for in the system using a set of ex-change relations.The considered well-balanced Runge-Kutta discontinuous Galerkin method is a locally conservativefinite element method whose approximate solutions are discontinuous across the inter-element boundaries.The well-balanced property is achieved using a special discretization of source terms that depends on the nature of hydrostatic solutions along with the Gauss-Lobatto-Legendre nodes for the quadra-ture used in the approximation of source terms.The method can also be viewed as a high-order version of upwindfinite volume solvers and it offers attractive features for the numerical solution of conservation laws for which standardfinite element methods fail.To deal with the source terms we also implement a high-order splitting operator for the time integration.The accuracy of the proposed Runge-Kutta discontinuous Galerkin method is examined for several examples of multilayer free-surfaceflows over bothflat and non-flat beds.The performance of the method is also demonstrated by comparing the results obtained using the proposed method to those obtained using the incompressible hydrostatic Navier-Stokes equations and a well-established kinetic method.The proposed method is also applied to solve a recirculationflow problem in the Strait of Gibraltar.
基金The work is supported by the Basic Research Foundation of the National NumericalWind Tunnel Project(Grant No.NNW2018-ZT4A08)the National Natural Science Foundation(Grant No.11972370)the National Key Project(Grant No.GJXM92579)of China.
文摘It is well known that developing well-balanced schemes for the balance laws is useful for reducing numerical errors.In this paper,a well-balanced weighted compact nonlinear scheme(WCNS)is proposed for shallow water equations in prebalanced forms.The scheme is proved to be well-balanced provided that the source term is treated appropriately as the advection term.Some numerical examples in oneand two-dimensions are also presented to demonstrate the well-balanced property,high order accuracy and good shock capturing capability of the proposed scheme.
基金The authors would like to thank the support of the Natural Science Foundation of China through Grants Nos.11201254 and 41476101the Natural Science Foundation of Shandong Province of China through Grants Nos.ZR2014DM017 and ZR2015PF002the Project for Scientific Plan of Higher Education in Shandong Province of China through Grant No.J12LI08.
文摘The blood flow model admits the steady state,in which the flux gradient is non-zero and is exactly balanced by the source term.In this paper,we present a high order well-balanced finite difference weighted essentially non-oscillatory(WENO)scheme,which exactly preserves the steady state.In order to maintain the wellbalanced property,we propose to reformulate the equation and apply a novel source term approximation.Extensive numerical experiments are carried out to verify the performances of the current scheme such as the maintenance of well-balanced property,the ability to capture the perturbations of such steady state and the genuine high order accuracy for smooth solutions.
文摘Equilibrium or stationary solutions usually proceed through the exact balance between hyperbolic transport terms and source terms. Such equilibrium solutions are affected by truncation errors that prevent any classical numerical scheme from capturing the evolution of small amplitude waves of physical significance. In order to overcome this problem, we compare two commonly adopted strategies: going to very high order and reduce drastically the truncation errors on the equilibrium solution, or design a specific scheme that preserves by construction the equilibrium exactly, the so-called well-balanced approach. We present a modern numerical implementation of these two strategies and compare them in details, using hydrostatic but also dynamical equilibrium solutions of several simple test cases. Finally, we apply our methodology to the simulation of a protoplanetary disc in centrifugal equilibrium around its star and model its interaction with an embedded planet, illustrating in a realistic application the strength of both methods.
基金support of the Natural Science Foundation of China through Grants No.11771228The author Qiang Niu is supported by the XJTLU research enhancement fund with No.REF-18-01-04 and the Key Programme Special Fund(KSF)in XJTLU with Nos.KSF-E-32,KSF-E-21 and KSF-P-02.
文摘In this work,we present a high-order discontinuous Galerkin method for the shallow water equations incorporating horizontal temperature gradients(also known as the Ripa model),which exactly maintains the lake at rest steady state.Herein,we propose original numerical fluxes defined on the basis of the hydrostatic reconstruction idea and a simple source term approximation.This novel approach allows us to achieve the well-balancing of the discontinuous Galerkin method without complication.Moreover,the proposed method retains genuinely high-order accuracy for smooth solutions and it shows good resolution for discontinuous solutions at the same time.Rigorous numerical analysis as well as extensive numerical results all verify the good performances of the proposed method.
基金supported by Grant PID2020-117211GB-I00funded by MCIN/AEI/10.13039/501100011033+4 种基金by Grant CIAICO/2021/227funded by the Generalitat Valencianasupported by the Ministerio de Ciencia e Innovacion of Spain(Grant Ref.PID2021-125709OB-C21)funded by MCIN/AEI/10.13039/501100011033/FEDER,UEby the Generalitat Valenciana(CIAICO/2021/224).
文摘Cost-effective multilevel techniques for homogeneous hyperbolic conservation laws are very successful in reducing the computational cost associated to high resolution shock capturing numerical schemes.Because they do not involve any special data structure,and do not induce savings in memory requirements,they are easily implemented on existing codes and are recommended for 1D and 2D simulations when intensive testing is required.The multilevel technique can also be applied to balance laws,but in this case,numerical errors may be induced by the technique.We present a series of numerical tests that point out that the use of monotonicity-preserving interpolatory techniques eliminates the numerical errors observed when using the usual 4-point centered Lagrange interpolation,and leads to a more robust multilevel code for balance laws,while maintaining the efficiency rates observed forhyperbolic conservation laws.
基金the National Natural Science Foundation of China(11901555,11871448,12001009).
文摘A high order finite difference numerical scheme is developed for the shallow water equations on curvilinear meshes based on an alternative flux formulation of the weighted essentially non-oscillatory(WENO)scheme.The exact C-property is investigated,and comparison with the standard finite difference WENO scheme is made.Theoretical derivation and numerical results show that the proposed finite difference WENO scheme can maintain the exact C-property on both stationarily and dynamically generalized coordinate systems.The Harten-Lax-van Leer type flux is developed on general curvilinear meshes in two dimensions and verified on a number of benchmark problems,indicating smaller errors compared with the Lax-Friedrichs solver.In addition,we propose a positivity-preserving limiter on stationary meshes such that the scheme can preserve the non-negativity of the water height without loss of mass conservation.
文摘为精确模拟浅水波非线性演化过程中的动边界,提出一种基于位移的Hamilton变分原理,并进而导出一种基于位移的浅水方程(Shallow Water Equation based on Displacement,SWE-D).SWE-D以位移为基本未知量,可以精确满足动边界处的零水深要求并精确捕捉动态边界位置,且解具有协调性.在Hamilton变分原理的框架下,分别采用有限元和保辛积分算法对该浅水方程进行空间离散和时间积分,可有效地处理不平水底情况,保证对非线性演化进行长时间仿真的精度.数值算例表明该方法适用于浅水动边界问题的数值模拟.
基金funded by Natural Science Foundation of China (Grants No. 11172217 and 11432015)National Key Basic Research and Development Program (i.e., 973 Program) of China (Grant No. 2007CB714106)
文摘One of the largest known megafloods on earth resulted from a glacier dam-break,which occurred during the Late Quaternary in the Altai Mountains in Southern Siberia.Computational modeling is one of the viable approaches to enhancing the understanding of the flood events.The computational domain of this flood is over 9460 km2 and about 3.784 × 106 cells are involved as a 50 m × 50 m mesh is used,which necessitates a computationally efficient model.Here the Open MP(Open Multiprocessing) technique is adopted to parallelize the code of a coupled 2D hydrodynamic and sediment transport model.It is shown that the computational efficiency is enhanced by over 80% due to the parallelization.The floods over both fixed and mobile beds are well reproduced with specified discharge hydrographs at the dam site.Qualitatively,backwater effects during the flood are resolved at the bifurcation between the Chuja and Katun rivers.Quantitatively,the computed maximum stage and thalweg are physically consistent with the field data of the bars and deposits.The effects of sediment transport and morphological evolution on the flood are considerable.Sensitivity analyses indicate that the impact of the peak discharge is significant,whilst those of the Manningroughness,medium sediment size and shape of the inlet discharge hydrograph are marginal.
基金NSFC grant(No.11771201)by the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)。
文摘We construct new HLL-type moving-water equilibria preserving upwind schemes for the one-dimensional Saint-Venant system of shallow water equations with nonflat bottom topography.The designed first-and secondorder schemes are tested on a number of numerical examples,in which we verify the well-balanced property as well as the ability of the proposed schemes to accurately capture small perturbations of moving-water steady states.