The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
We measured erodibility and mean weight diameter (MWD) of soil aggregates in different parts of a forest road. Samples of topsoil were collected from cutslope, fillslope, road surface and forest ground to assess the...We measured erodibility and mean weight diameter (MWD) of soil aggregates in different parts of a forest road. Samples of topsoil were collected from cutslope, fillslope, road surface and forest ground to assess the texture, bulk density, moisture, CaCO3 and organic matter. Soil aggregate stability was determined by wet sieving. Soil erodibility on the road surface was 2.3 and 1.3 times higher than on the fillslope and cutslope, respectively. The forest soil had the lowest erodibility. Aggregate stability of cutslope and road surface were low and very low, respectively. There was a significant negative relationship between cutslope erodibility with CaCO3 and sand content. Cutslope erodibility increased with increasing silt, clay and moisture content. On fillslopes, MWD increased with in-creasing rock fragment cover, plant cover, litter cover, organic matter and sand. There was a strong negative correlation between fillslope erodibility and organic matter, sand and MWD. There was no significant difference between erodibility of bare soil and soils beneathRubus hyrcanusL. and Philonotis marchica (Hedw.) Brid.展开更多
In recent years,the winter temperature in southern China decreases year by year,and the phenomenon of freeze-thaw damage is also wide-spread in hydraulic buildings.In this paper,the freezing-thawing cycle tests of ful...In recent years,the winter temperature in southern China decreases year by year,and the phenomenon of freeze-thaw damage is also wide-spread in hydraulic buildings.In this paper,the freezing-thawing cycle tests of fully graded concrete specimens and corresponding wet sieving suitable for climate conditions in southern China were carried out,and the effects of freezing-thaw cycles on the appearance,mass loss,relative dynamic elastic modulus,internal temperature and strain of fully graded concrete and wet sieving concrete were studied.The splitting tensile strength test of concrete specimens with specified salt freezing cycles was carried out,and the relationship between the strength reduction of fully graded concrete and wet sieving concrete specimens and the number of freeze-thaw cycles was analyzed.The results show that with the increase of freeze-thaw cycles,the properties of fully graded concrete and wet sieving concrete degraded,and the degradation of compressive strength was the most significant,followed by the splitting tensile strength.In the initial stage of the freeze-thaw cycles,the degradation of each property was not obvious,and the deterioration rate of each property increased significantly after 100 freeze-thaw cycles.Besides,the relationship between the splitting tensile strength of fully graded concrete and wet sieving concrete and the internal wave velocity after freeze-thaw cycles was established.The test results can provide theoretical basis for the design,repair,maintenance and life prediction of dams and offshore platforms in southern China.展开更多
On the basis of previous research results, the frost resistance of fully graded concrete and small wet sieving concrete specimens was compared and analyzed, and the characteristics and rules of freeze-thaw damage of h...On the basis of previous research results, the frost resistance of fully graded concrete and small wet sieving concrete specimens was compared and analyzed, and the characteristics and rules of freeze-thaw damage of hydraulic fully graded concrete after freeze-thaw cycles were analyzed through freeze-thaw test, impact-echo test, mechanical test and so on. Meanwhile, the damage characteristics of concrete in the salt and water freezing environment were compared. Through the mechanical test, it is found that the mechanical properties of both fully graded concrete and wet sieving concrete decreased to varying degrees after freeze-thaw cycles. The laws of uniaxial compression and tensile strength of concrete varying with the number of freeze-thaw cycles were obtained. The life of concrete after freeze-thaw cycles was predicted, and it is concluded that the life of concrete in the salt freezing environment was only 0.8 times that in the water freezing environment, proving once again that the damage of concrete in the salt freezing environment was more serious than that in the water freezing environment. Therefore, the grade of frost resistance should be improved appropriately for concrete engineering with salt solution. Finally, based on the damage theory and Lemaitre strain equivalence principle, the freeze-thaw damage evolution equation suitable for fully graded concrete was obtained.展开更多
To produce high-purity silica sand usable for glass making, the present study was carried out. The objective of this work was to increase the silicon dioxide (SiO<sub>2</sub>) content to at least 99% using...To produce high-purity silica sand usable for glass making, the present study was carried out. The objective of this work was to increase the silicon dioxide (SiO<sub>2</sub>) content to at least 99% using a simple process without chemical input. The raw sand samples were taken from the Ivorian sedimentary basin, from Maféré and Assinie areas, C<span style="white-space:nowrap;">ô</span>te d’Ivoire. Wet sieving and attrition technique were used for the purification process. The results from the energy dispersive spectrometer (EDS) analyses of the raw and treated samples show a significant increase of silica content and a significant reduction of impurities. The silica content (SiO<sub>2</sub>) of the sand of Maféré increases from 98.73% ± 0.15% to 99.92% ± 0.05%. And the sand of Assinie increased from 98.82% ± 0.67% in the raw samples to 99.44% ± 0.27% after treatment. The rate of iron oxide and alumina is reduced in these sands. Moreover, the sand of Maféré contains 53.2% of grains of size lower than 500 microns and that of Assinie contains 29.30%. Regarding the chemical composition of these purified sands, they meet the standard BS2975s, the American Ceramic Society and the National Bureau of Standards for window glass making.展开更多
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
文摘We measured erodibility and mean weight diameter (MWD) of soil aggregates in different parts of a forest road. Samples of topsoil were collected from cutslope, fillslope, road surface and forest ground to assess the texture, bulk density, moisture, CaCO3 and organic matter. Soil aggregate stability was determined by wet sieving. Soil erodibility on the road surface was 2.3 and 1.3 times higher than on the fillslope and cutslope, respectively. The forest soil had the lowest erodibility. Aggregate stability of cutslope and road surface were low and very low, respectively. There was a significant negative relationship between cutslope erodibility with CaCO3 and sand content. Cutslope erodibility increased with increasing silt, clay and moisture content. On fillslopes, MWD increased with in-creasing rock fragment cover, plant cover, litter cover, organic matter and sand. There was a strong negative correlation between fillslope erodibility and organic matter, sand and MWD. There was no significant difference between erodibility of bare soil and soils beneathRubus hyrcanusL. and Philonotis marchica (Hedw.) Brid.
文摘In recent years,the winter temperature in southern China decreases year by year,and the phenomenon of freeze-thaw damage is also wide-spread in hydraulic buildings.In this paper,the freezing-thawing cycle tests of fully graded concrete specimens and corresponding wet sieving suitable for climate conditions in southern China were carried out,and the effects of freezing-thaw cycles on the appearance,mass loss,relative dynamic elastic modulus,internal temperature and strain of fully graded concrete and wet sieving concrete were studied.The splitting tensile strength test of concrete specimens with specified salt freezing cycles was carried out,and the relationship between the strength reduction of fully graded concrete and wet sieving concrete specimens and the number of freeze-thaw cycles was analyzed.The results show that with the increase of freeze-thaw cycles,the properties of fully graded concrete and wet sieving concrete degraded,and the degradation of compressive strength was the most significant,followed by the splitting tensile strength.In the initial stage of the freeze-thaw cycles,the degradation of each property was not obvious,and the deterioration rate of each property increased significantly after 100 freeze-thaw cycles.Besides,the relationship between the splitting tensile strength of fully graded concrete and wet sieving concrete and the internal wave velocity after freeze-thaw cycles was established.The test results can provide theoretical basis for the design,repair,maintenance and life prediction of dams and offshore platforms in southern China.
文摘On the basis of previous research results, the frost resistance of fully graded concrete and small wet sieving concrete specimens was compared and analyzed, and the characteristics and rules of freeze-thaw damage of hydraulic fully graded concrete after freeze-thaw cycles were analyzed through freeze-thaw test, impact-echo test, mechanical test and so on. Meanwhile, the damage characteristics of concrete in the salt and water freezing environment were compared. Through the mechanical test, it is found that the mechanical properties of both fully graded concrete and wet sieving concrete decreased to varying degrees after freeze-thaw cycles. The laws of uniaxial compression and tensile strength of concrete varying with the number of freeze-thaw cycles were obtained. The life of concrete after freeze-thaw cycles was predicted, and it is concluded that the life of concrete in the salt freezing environment was only 0.8 times that in the water freezing environment, proving once again that the damage of concrete in the salt freezing environment was more serious than that in the water freezing environment. Therefore, the grade of frost resistance should be improved appropriately for concrete engineering with salt solution. Finally, based on the damage theory and Lemaitre strain equivalence principle, the freeze-thaw damage evolution equation suitable for fully graded concrete was obtained.
文摘To produce high-purity silica sand usable for glass making, the present study was carried out. The objective of this work was to increase the silicon dioxide (SiO<sub>2</sub>) content to at least 99% using a simple process without chemical input. The raw sand samples were taken from the Ivorian sedimentary basin, from Maféré and Assinie areas, C<span style="white-space:nowrap;">ô</span>te d’Ivoire. Wet sieving and attrition technique were used for the purification process. The results from the energy dispersive spectrometer (EDS) analyses of the raw and treated samples show a significant increase of silica content and a significant reduction of impurities. The silica content (SiO<sub>2</sub>) of the sand of Maféré increases from 98.73% ± 0.15% to 99.92% ± 0.05%. And the sand of Assinie increased from 98.82% ± 0.67% in the raw samples to 99.44% ± 0.27% after treatment. The rate of iron oxide and alumina is reduced in these sands. Moreover, the sand of Maféré contains 53.2% of grains of size lower than 500 microns and that of Assinie contains 29.30%. Regarding the chemical composition of these purified sands, they meet the standard BS2975s, the American Ceramic Society and the National Bureau of Standards for window glass making.