Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their appli...Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their application in the treatment of ischemic stroke,therefore their therapeutic effect requires further verification.In this study,h WJ-MSCs were transplanted into an ischemic stroke rat model via the tail vein 48 hours after transient middle cerebral artery occlusion.After 4 weeks,neurological functions of the rats implanted with h WJ-MSCs were significantly recovered.Furthermore,many h WJ-MSCs homed to the ischemic frontal cortex whereby they differentiated into neuron-like cells at this region.These results confirm that h WJ-MSCs transplanted into the ischemic stroke rat can differentiate into neuron-like cells to improve rat neurological function and behavior.展开更多
Objective To compare the characterization and myocardial differentiation capacity of arnniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells ...Objective To compare the characterization and myocardial differentiation capacity of arnniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells (WJ MSCs). Methods The human AF MSCs were cultured from amniotic fluid samples obtained by amniocentesis. The umbilical cord WJ MSCs were obtained from Wharton's Jelly of umbilical cords of infants delivered full-term by normal labor. The morphology, growth curves, and analyses by flow cytometry of cell surface markers were compared between the two types of cells. Myocardial genes (GATA-4, c-TnT, a-actin, and Cx43) were detected by real-time PCR and the corresponding protein expressions were detected by Western blot analysis after myocardial induced in AF MSCs and WJ MSCs. Results Our findings revealed AF MSCs and WJ MSCs shared similar morphological characteristics of the fibroblastoid shape. The AF MSCs were easily obtained than the WJ MSCs and had a shorter time to reach adherence of 2.7 ± 1.6 days to WJ MSCs of 6.5 ± 1.8 days. The growth curves by MTT cytotoxic assay showed the AF MSCs had a similar proliferative capacity at passage 5 and passage 10. However, the proliferative capacities ofWJ MSCs were decreased at 5 passage relative to 10 passage. Both AF stem cells and WJ stem cells had the characteristics of mesenchymal stromal cells with some characteristics of embryonic stem cells. They express CD29 and CD105, but not CD34. They were positive for Class I major histocompatibility (MHC I) antigens (HLA-ABC), and were negative, or mildly positive, for MHC Class II (HLA-DR) antigen. Oct-4 was positive in all the two cells types. Both AF MSCs and WJ MSCs could differentiate along myocardium. The differentiation capacities were detected by the expression of GATA-4, c-TnT, a-actin, Cx43 after myocardial induction. Conclusions Both AF MSCs and WJ MSCs have the potential clinical application for myogenesis in cardiac regenerative therapy.展开更多
Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted in...Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.展开更多
Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serumfree neural stem cellconditioned medium or neural stem cellconditioned medium supplemented with Dkk1, ...Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serumfree neural stem cellconditioned medium or neural stem cellconditioned medium supplemented with Dkk1, a Wnt/13 catenin pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist to induce differentiation into retinal progenitor cells. Inverted microscopy showed that after induction, the spindleshaped or fibroblastlike Wharton's jelly mesenchymal stem cells changed into bulbous cells with numerous processes. Immunofluorescent cytochemical stain ing and reversetranscription PCR showed positive expression of retinal progenitor cell markers, Pax6 and Rx, as well as weakly downregulated nestin expression. These results demonstrate that Wharton's jelly mesenchymal stem cells are capable of differentiating into retinal progenitor cells in vitro.展开更多
Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising see...Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment applications.This study was carried out to explore the biocompatibility of scaffolds to seeding cells in vitro.Rod-like nano-hydroxyapatite(RN-HA)and flake-like micro-hydroxyapatite(FM-HA)coatings were prepared on Mg-Zn-Ca alloy substrates using micro-arc oxidation and electrochemical deposition.WJCs were utilized to investigate the cellular biocompatibility of Mg-Zn-Ca alloys after different surface modifications by observing the cell adhesion,morphology,proliferation,and osteoblastic differentiation.The in vitro results indicated that the RN-HA coating group was more suitable for cell proliferation and cell osteoblastic differentiation than the FM-HA group,demonstrating better biocompatibility.Our results suggested that the RN-HA coating on Mg-Zn-Ca alloy substrates might be of great potential in bone tissue engineering.展开更多
Background The two most basic properties of mesenchymal stem cells (MSCs) are the capacities to selfrenew indefinitely and differentiate into multiple cells and tissue types. The cells from human umbilical cord Whar...Background The two most basic properties of mesenchymal stem cells (MSCs) are the capacities to selfrenew indefinitely and differentiate into multiple cells and tissue types. The cells from human umbilical cord Wharton' s Jelly have properties of MSCs and represent a rich source of primitive cells. This study was conducted to explore the possibility of inducing human umbilical cord Wharton' s Jelly-derived MSCs to differentiate into nerve-like cells.Methods MSCs were cultured from the Wharton' s Jelly taken from human umbilical cord of babies delivered after full-term normal labor. Salvia miltiorrhiza and [3-mercaptoethanol were used to induce the human umbilical cord-derived MSCs to differentiate The expression of neural protein markers was shown by immunocytochemistry. The induction process was monitored by phase contrast microscopy, electron microscopy (EM), and laser scanning confocal microscopy (LSCM) . The pleiotrophin and nestin genes were measured by reverse transcription-polymerase chain reaction (RT-PCR).Results MSCs in the Wharton' s Jelly were easily attainable and could be maintained and expanded in culture. They were positive for markers of MSCs, but negative for markers of hematopoietic cells and graft-versus-host disease (GVHD)-related cells. Treatment with Salvia mihiorrhiza caused Wharton' s Jelly cells to undergo profound morphological changes. The induced MSCs developed rounded cell bodies with multiple neurite-like extensions. Eventually they developed processes that formed networks reminiscent of primary cultures of neurons. Salvia mihiorrhiza and β-mercaptoethanol also induced MSCs to express nestin, β-tubulin Ⅲ, neurofilament (NF) and glial fibrillary acidic protein (GFAP). It was confirmed by RT-PCR that MSCs could express pleiotrophin both before and after induction by Salvia miltiorrhiza. The expression was markedly enhanced after induction and the nestin gene was also expressed.Conclusions MSCs could be isolated from human umbilical cord Wharton' s Jelly. They were capable ofdifferentiating into nerve-like cells using Salvia miltiorrhiza or 15-mercaptoethanol. The induced MSCs not only underwent morphologic changes, but also expressed the neuron-related genes and neuronal cell markers. They may represent an alternative source of stem cells for central nervous system cell transplantation.展开更多
Congenital human cytomegalovirus(HCMV) infection is a leading infectious cause of birth defects.Previous studies have reported birth defects with multiple organ maldevelopment in congenital HCMV-infected neonates. Mul...Congenital human cytomegalovirus(HCMV) infection is a leading infectious cause of birth defects.Previous studies have reported birth defects with multiple organ maldevelopment in congenital HCMV-infected neonates. Multipotent mesenchymal stromal cells(MSCs) are a group of stem/progenitor cells that are multi-potent and can self-renew, and they play a vital role in multiorgan formation. Whether MSCs are susceptible to HCMV infection is unclear. In this study, MSCs were isolated from Wharton's jelly of the human umbilical cord and identified by their plastic adherence, surface marker pattern, and differentiation capacity. Then, the MSCs were infected with the HCMV Towne strain, and infection status was assessed via determination of viral entry,replication initiation, viral protein expression, and infectious virion release using western blotting,immunofluorescence assays, and plaque forming assays. The results indicate that the isolated MSCs were fully permissive for HCMV infection and provide a preliminary basis for understanding the pathogenesis of HCMV infection in non-nervous system diseases, including multi-organ malformation during fetal development.展开更多
基金supported by the National Natural Science Foundation of China,No.31171038the Natural Science Foundation of Jiangsu Province of China,No.BK2011385+3 种基金the "333" Program Funding of Jiangsu Province of China,No.BRA2016450the Training Program of Innovation and Entrepreneurship for Undergraduates of Nantong University of China,No.201510304033Z,201610304053Zthe Training Program of Innovation and Entrepreneurship for Graduates of Nantong University of China,No.YKC14050,YKC15046a grant from Funds for the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their application in the treatment of ischemic stroke,therefore their therapeutic effect requires further verification.In this study,h WJ-MSCs were transplanted into an ischemic stroke rat model via the tail vein 48 hours after transient middle cerebral artery occlusion.After 4 weeks,neurological functions of the rats implanted with h WJ-MSCs were significantly recovered.Furthermore,many h WJ-MSCs homed to the ischemic frontal cortex whereby they differentiated into neuron-like cells at this region.These results confirm that h WJ-MSCs transplanted into the ischemic stroke rat can differentiate into neuron-like cells to improve rat neurological function and behavior.
文摘Objective To compare the characterization and myocardial differentiation capacity of arnniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells (WJ MSCs). Methods The human AF MSCs were cultured from amniotic fluid samples obtained by amniocentesis. The umbilical cord WJ MSCs were obtained from Wharton's Jelly of umbilical cords of infants delivered full-term by normal labor. The morphology, growth curves, and analyses by flow cytometry of cell surface markers were compared between the two types of cells. Myocardial genes (GATA-4, c-TnT, a-actin, and Cx43) were detected by real-time PCR and the corresponding protein expressions were detected by Western blot analysis after myocardial induced in AF MSCs and WJ MSCs. Results Our findings revealed AF MSCs and WJ MSCs shared similar morphological characteristics of the fibroblastoid shape. The AF MSCs were easily obtained than the WJ MSCs and had a shorter time to reach adherence of 2.7 ± 1.6 days to WJ MSCs of 6.5 ± 1.8 days. The growth curves by MTT cytotoxic assay showed the AF MSCs had a similar proliferative capacity at passage 5 and passage 10. However, the proliferative capacities ofWJ MSCs were decreased at 5 passage relative to 10 passage. Both AF stem cells and WJ stem cells had the characteristics of mesenchymal stromal cells with some characteristics of embryonic stem cells. They express CD29 and CD105, but not CD34. They were positive for Class I major histocompatibility (MHC I) antigens (HLA-ABC), and were negative, or mildly positive, for MHC Class II (HLA-DR) antigen. Oct-4 was positive in all the two cells types. Both AF MSCs and WJ MSCs could differentiate along myocardium. The differentiation capacities were detected by the expression of GATA-4, c-TnT, a-actin, Cx43 after myocardial induction. Conclusions Both AF MSCs and WJ MSCs have the potential clinical application for myogenesis in cardiac regenerative therapy.
基金supported by the National Natural Science Foundation of China, No. 81100916, 30400464,81271316the Postdoctoral Science Foundation of China,No. 201104901907
文摘Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.
基金supported by 2010 Com-advanced School Young Diaph Support Project of Heilongjiang Province,China, No. 1155G60
文摘Human Wharton's jelly mesenchymal stem cells were isolated from fetal umbilical cord. Cells were cultured in serumfree neural stem cellconditioned medium or neural stem cellconditioned medium supplemented with Dkk1, a Wnt/13 catenin pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist to induce differentiation into retinal progenitor cells. Inverted microscopy showed that after induction, the spindleshaped or fibroblastlike Wharton's jelly mesenchymal stem cells changed into bulbous cells with numerous processes. Immunofluorescent cytochemical stain ing and reversetranscription PCR showed positive expression of retinal progenitor cell markers, Pax6 and Rx, as well as weakly downregulated nestin expression. These results demonstrate that Wharton's jelly mesenchymal stem cells are capable of differentiating into retinal progenitor cells in vitro.
基金supported by the National Natural Science Foundation of China(81071008,81171177,and 30870634)the Strategic Priority Re-search Program of the Chinese Academy of Sciences(XDA01030300)+3 种基金the Program for New Century Excellent Talents in University(NCET-06-0611)the Excellent Youth Foundation of Henan Scientific Committee(114100510005)the Young Excellent Teachers in University Funded Projects of Henan ProvinceBureau of Science and Technology Development Project from Henan Province(122102310203)
文摘Seeding cells and scaffolds play pivotal roles in bone tissue engineering and regenerative medicine.Wharton’s jelly-derived mesenchymal stem cells(WJCs)from human umbilical cord represent attractive and promising seeding cells in tissue regeneration and engineering for treatment applications.This study was carried out to explore the biocompatibility of scaffolds to seeding cells in vitro.Rod-like nano-hydroxyapatite(RN-HA)and flake-like micro-hydroxyapatite(FM-HA)coatings were prepared on Mg-Zn-Ca alloy substrates using micro-arc oxidation and electrochemical deposition.WJCs were utilized to investigate the cellular biocompatibility of Mg-Zn-Ca alloys after different surface modifications by observing the cell adhesion,morphology,proliferation,and osteoblastic differentiation.The in vitro results indicated that the RN-HA coating group was more suitable for cell proliferation and cell osteoblastic differentiation than the FM-HA group,demonstrating better biocompatibility.Our results suggested that the RN-HA coating on Mg-Zn-Ca alloy substrates might be of great potential in bone tissue engineering.
文摘Background The two most basic properties of mesenchymal stem cells (MSCs) are the capacities to selfrenew indefinitely and differentiate into multiple cells and tissue types. The cells from human umbilical cord Wharton' s Jelly have properties of MSCs and represent a rich source of primitive cells. This study was conducted to explore the possibility of inducing human umbilical cord Wharton' s Jelly-derived MSCs to differentiate into nerve-like cells.Methods MSCs were cultured from the Wharton' s Jelly taken from human umbilical cord of babies delivered after full-term normal labor. Salvia miltiorrhiza and [3-mercaptoethanol were used to induce the human umbilical cord-derived MSCs to differentiate The expression of neural protein markers was shown by immunocytochemistry. The induction process was monitored by phase contrast microscopy, electron microscopy (EM), and laser scanning confocal microscopy (LSCM) . The pleiotrophin and nestin genes were measured by reverse transcription-polymerase chain reaction (RT-PCR).Results MSCs in the Wharton' s Jelly were easily attainable and could be maintained and expanded in culture. They were positive for markers of MSCs, but negative for markers of hematopoietic cells and graft-versus-host disease (GVHD)-related cells. Treatment with Salvia mihiorrhiza caused Wharton' s Jelly cells to undergo profound morphological changes. The induced MSCs developed rounded cell bodies with multiple neurite-like extensions. Eventually they developed processes that formed networks reminiscent of primary cultures of neurons. Salvia mihiorrhiza and β-mercaptoethanol also induced MSCs to express nestin, β-tubulin Ⅲ, neurofilament (NF) and glial fibrillary acidic protein (GFAP). It was confirmed by RT-PCR that MSCs could express pleiotrophin both before and after induction by Salvia miltiorrhiza. The expression was markedly enhanced after induction and the nestin gene was also expressed.Conclusions MSCs could be isolated from human umbilical cord Wharton' s Jelly. They were capable ofdifferentiating into nerve-like cells using Salvia miltiorrhiza or 15-mercaptoethanol. The induced MSCs not only underwent morphologic changes, but also expressed the neuron-related genes and neuronal cell markers. They may represent an alternative source of stem cells for central nervous system cell transplantation.
基金supported by the National Science Foundation of China (81071350,81271850,and 31170155)the National Program on Key Basic Research Project (973 program 2011CB504804 and 2012CB519003)
文摘Congenital human cytomegalovirus(HCMV) infection is a leading infectious cause of birth defects.Previous studies have reported birth defects with multiple organ maldevelopment in congenital HCMV-infected neonates. Multipotent mesenchymal stromal cells(MSCs) are a group of stem/progenitor cells that are multi-potent and can self-renew, and they play a vital role in multiorgan formation. Whether MSCs are susceptible to HCMV infection is unclear. In this study, MSCs were isolated from Wharton's jelly of the human umbilical cord and identified by their plastic adherence, surface marker pattern, and differentiation capacity. Then, the MSCs were infected with the HCMV Towne strain, and infection status was assessed via determination of viral entry,replication initiation, viral protein expression, and infectious virion release using western blotting,immunofluorescence assays, and plaque forming assays. The results indicate that the isolated MSCs were fully permissive for HCMV infection and provide a preliminary basis for understanding the pathogenesis of HCMV infection in non-nervous system diseases, including multi-organ malformation during fetal development.