In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on out...In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.展开更多
As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and l...As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.展开更多
Radio frequency/microwave-directed energy sources using wide bandgap SiC photoconductive semiconductors have attracted much attention due to their unique advantages of high-power output and multi-parameter adjustable ...Radio frequency/microwave-directed energy sources using wide bandgap SiC photoconductive semiconductors have attracted much attention due to their unique advantages of high-power output and multi-parameter adjustable ability.Over the past several years,benefitting from the sustainable innovations in laser technology and the significant progress in materials technology,megawatt-class output power electrical pulses with a flexible frequency in the P and L microwave wavebands have been achieved by photoconductive semiconductor devices.Here,we mainly summarize and review the recent progress of the high-power photonic microwave generation based on the SiC photoconductive semiconductor devices in the linear modulation mode,including the mechanism,system architecture,critical technology,and experimental demonstration of the proposed high-power photonic microwave sources.The outlooks and challenges for the future of multi-channel power synthesis development of higher power photonic microwave using wide bandgap photoconductors are also discussed.展开更多
Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a ...Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a need to reduce their losses and improve their performance to reduce electric power consumption. Current power semiconductor devices, such as inverters, are made of silicon (Si), but the performance of these Si power devices is reaching its limit due to physical properties and energy bandgap. To address this issue, recent developments in wide bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer the potential for a new generation of power semiconductor devices that can perform significantly better than silicon-based devices. In this research, a green synthesized copper-zinc-tin-sulfide (CZTS) nanoparticle is proposed as a new WBG semiconductor material that could be used for optical and electronic devices. Its synthesis, consisting of the production methods and materials used, is discussed. The characterization is also discussed, and further research is recommended in the later sections to enable the continual advancement of this technology.展开更多
Wide-bandgap semiconductors exhibit much larger energybandgaps than traditional semiconductors such as silicon,rendering them very promising to be applied in the fields of electronics and optoelectronics.Prominent exa...Wide-bandgap semiconductors exhibit much larger energybandgaps than traditional semiconductors such as silicon,rendering them very promising to be applied in the fields of electronics and optoelectronics.Prominent examples of semiconductors include SiC,GaN,ZnO,and diamond,which exhibitdistinctive characteristics such as elevated mobility and thermalconductivity.These characteristics facilitate the operation of awide range of devices,including energy-efficient bipolar junctiontransistors(BJTs)and metal-oxide-semiconductor field-effecttransistors(MOSFETs),as well as high-frequency high-electronmobility transistors(HEMTs)and optoelectronic components suchas light-emitting diodes(LEDs)and lasers.These semiconductorsare used in building integrated circuits(ICs)to facilitate theoperation of power electronics,computer devices,RF systems,andother optoelectronic advancements.These breakthroughs includevarious applications such as imaging,optical communication,andsensing.Among them,the field of power electronics has witnessedtremendous progress in recent years with the development of widebandgap(WBG)semiconductor devices,which is capable ofswitching large currents and voltages rapidly with low losses.However,it has been proven challenging to integrate these deviceswith silicon complementary metal oxide semiconductor(CMOS)logic circuits required for complex control functions.The monolithic integration of silicon CMOS with WBG devices increases thecomplexity of fabricating monolithically integrated smart integrated circuits(ICs).This review article proposes implementingCMOS logic directly on the WBG platform as a solution.However,achieving the CMOS functionalities with the adoption of WBGmaterials still remains a significant hurdle.This article summarizesthe research progress in the fabrication of integrated circuitsadopting various WBG materials ranging from SiC to diamond,with the goal of building future smart power ICs.展开更多
报道了研制的 Al Ga N / Ga N微波功率 HEMT,该器件采用以蓝宝石为衬底的非掺杂 Al Ga N/ Ga N异质结构 ,器件工艺采用了 Ti/ Al/ Ni/ Au欧姆接触和 Ni/ Au肖特基势垒接触以及 Si N介质进行器件的钝化 .研制的 2 0 0μm栅宽 T型布局 Al ...报道了研制的 Al Ga N / Ga N微波功率 HEMT,该器件采用以蓝宝石为衬底的非掺杂 Al Ga N/ Ga N异质结构 ,器件工艺采用了 Ti/ Al/ Ni/ Au欧姆接触和 Ni/ Au肖特基势垒接触以及 Si N介质进行器件的钝化 .研制的 2 0 0μm栅宽 T型布局 Al Ga N / Ga N HEMT在 1.8GHz,Vds=30 V时输出功率为 2 8.93d Bm,输出功率密度达到 3.9W/mm ,功率增益为 15 .5 9d B,功率附加效率 (PAE)为 4 8.3% .在 6 .2 GHz,Vds=2 5 V时该器件输出功率为 2 7.0 6 d Bm ,输出功率密度为 2 .5 W/ mm ,功率增益为 10 .2 4 d B,PAE为 35 .2 % .展开更多
文摘In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.
基金supported by the National Natural Science Foundation of China(Nos.61521064,61522408,61574169,6 1334007,61474136,61574166)the Ministry of Science andTechnology of China(Nos.2016YFA0201803,2016YFA0203800,2017YFB0405603)+2 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Nos.QYZDB-SSWJSC048,QYZDY-SSW-JSC001)the Beijing Municipal Science and Technology Project(No.Z171100002017011)the Opening Project of the Key Laboratory of Microelectronic Devices&Integration Technology,Institute of Microelectronics of Chinese Academy of Sciences
文摘As a promising ultra-wide bandgap semiconductor, gallium oxide(Ga_2O_3) has attracted increasing attention in recent years. The high theoretical breakdown electrical field(8 MV/cm), ultra-wide bandgap(~ 4.8 eV) and large Baliga's figure of merit(BFOM) of Ga_2O_3 make it a potential candidate material for next generation high-power electronics, including diode and field effect transistor(FET). In this paper, we introduce the basic physical properties of Ga_2O_3 single crystal, and review the recent research process of Ga_2O_3 based field effect transistors. Furthermore, various structures of FETs have been summarized and compared, and the potential of Ga_2O_3 is preliminary revealed. Finally, the prospect of the Ga_2O_3 based FET for power electronics application is analyzed.
基金supported in part by the National Natural Science Foundation of China(Nos.62071477 and 62101577)the Natural Science Foundation of Hunan Province(No.2021JJ40660)。
文摘Radio frequency/microwave-directed energy sources using wide bandgap SiC photoconductive semiconductors have attracted much attention due to their unique advantages of high-power output and multi-parameter adjustable ability.Over the past several years,benefitting from the sustainable innovations in laser technology and the significant progress in materials technology,megawatt-class output power electrical pulses with a flexible frequency in the P and L microwave wavebands have been achieved by photoconductive semiconductor devices.Here,we mainly summarize and review the recent progress of the high-power photonic microwave generation based on the SiC photoconductive semiconductor devices in the linear modulation mode,including the mechanism,system architecture,critical technology,and experimental demonstration of the proposed high-power photonic microwave sources.The outlooks and challenges for the future of multi-channel power synthesis development of higher power photonic microwave using wide bandgap photoconductors are also discussed.
文摘Power-electronic devices are widely used in various applications, such as voltage and frequency control for transmitting and converting electric power. As these devices are becoming increasingly important, there is a need to reduce their losses and improve their performance to reduce electric power consumption. Current power semiconductor devices, such as inverters, are made of silicon (Si), but the performance of these Si power devices is reaching its limit due to physical properties and energy bandgap. To address this issue, recent developments in wide bandgap (WBG) semiconductor materials, such as silicon carbide (SiC) and gallium nitride (GaN), offer the potential for a new generation of power semiconductor devices that can perform significantly better than silicon-based devices. In this research, a green synthesized copper-zinc-tin-sulfide (CZTS) nanoparticle is proposed as a new WBG semiconductor material that could be used for optical and electronic devices. Its synthesis, consisting of the production methods and materials used, is discussed. The characterization is also discussed, and further research is recommended in the later sections to enable the continual advancement of this technology.
基金supported by KAUST BaselineFund:BAS/1/1664-01-01,KAUST Near-term Grand Challenge Fund:REI/1/4999-01-01,KAUST Impact Acceleration Fund:REI/1/5124-01-01.
文摘Wide-bandgap semiconductors exhibit much larger energybandgaps than traditional semiconductors such as silicon,rendering them very promising to be applied in the fields of electronics and optoelectronics.Prominent examples of semiconductors include SiC,GaN,ZnO,and diamond,which exhibitdistinctive characteristics such as elevated mobility and thermalconductivity.These characteristics facilitate the operation of awide range of devices,including energy-efficient bipolar junctiontransistors(BJTs)and metal-oxide-semiconductor field-effecttransistors(MOSFETs),as well as high-frequency high-electronmobility transistors(HEMTs)and optoelectronic components suchas light-emitting diodes(LEDs)and lasers.These semiconductorsare used in building integrated circuits(ICs)to facilitate theoperation of power electronics,computer devices,RF systems,andother optoelectronic advancements.These breakthroughs includevarious applications such as imaging,optical communication,andsensing.Among them,the field of power electronics has witnessedtremendous progress in recent years with the development of widebandgap(WBG)semiconductor devices,which is capable ofswitching large currents and voltages rapidly with low losses.However,it has been proven challenging to integrate these deviceswith silicon complementary metal oxide semiconductor(CMOS)logic circuits required for complex control functions.The monolithic integration of silicon CMOS with WBG devices increases thecomplexity of fabricating monolithically integrated smart integrated circuits(ICs).This review article proposes implementingCMOS logic directly on the WBG platform as a solution.However,achieving the CMOS functionalities with the adoption of WBGmaterials still remains a significant hurdle.This article summarizesthe research progress in the fabrication of integrated circuitsadopting various WBG materials ranging from SiC to diamond,with the goal of building future smart power ICs.
文摘报道了研制的 Al Ga N / Ga N微波功率 HEMT,该器件采用以蓝宝石为衬底的非掺杂 Al Ga N/ Ga N异质结构 ,器件工艺采用了 Ti/ Al/ Ni/ Au欧姆接触和 Ni/ Au肖特基势垒接触以及 Si N介质进行器件的钝化 .研制的 2 0 0μm栅宽 T型布局 Al Ga N / Ga N HEMT在 1.8GHz,Vds=30 V时输出功率为 2 8.93d Bm,输出功率密度达到 3.9W/mm ,功率增益为 15 .5 9d B,功率附加效率 (PAE)为 4 8.3% .在 6 .2 GHz,Vds=2 5 V时该器件输出功率为 2 7.0 6 d Bm ,输出功率密度为 2 .5 W/ mm ,功率增益为 10 .2 4 d B,PAE为 35 .2 % .