Electromagnetic self-induction theory and computer are adopted and study of online monitoring technique for wire-core belt is conducted, the study shows that there is direct proportion between distance Ⅰ of broken en...Electromagnetic self-induction theory and computer are adopted and study of online monitoring technique for wire-core belt is conducted, the study shows that there is direct proportion between distance Ⅰ of broken ends and output volt Ⅴ, when Ⅰ ≥60 mm, Ⅴ keeps constantly, the running speed v of wire-core belt has no big effect on output volt Ⅴ, there is inverse proportion between the height h from probe to the surface of the belt and output volt Ⅴ, when h≥30 mm, Ⅴ tends to be zero. Based on the test result, on-line monitoring installation is developed, the practice proved that the accuracy of broken wire monitoring can be above 95%, the monitoring accuracy of joint twitch can be 0 .04 Ⅴ/mm.展开更多
This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive in...This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive inspection technique. Full scale mockups that simulated shell and liner regions of interest in the containment of both a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) were constructed. Inspections were performed on the mock-ups in three stages to discern the signal attenuation caused by flaws and caused by concrete in the structures. The effect of concrete being in close proximity to the liner and shell was determined, and the capability to detect and size flaws via this GW technique was evaluated.展开更多
CFRP (carbon fiber reinforced plastic) is used extensively in aircraft and spacecraft structures, because of its excellent mechanical properties. Ultrasonic testing, which is used as a non-destructive testing techni...CFRP (carbon fiber reinforced plastic) is used extensively in aircraft and spacecraft structures, because of its excellent mechanical properties. Ultrasonic testing, which is used as a non-destructive testing technique for CFRP, requires a contact medium. In contrast, eddy current testing does not require a contact medium, and when used for CFRP testing it has advantages not available with other techniques. CFRP is a laminate, with each layer being anisotropically conductive, and the distribution of the induced eddy current is yet to be determined. Here, to determine the eddy current distribution in the detection of flaws in cross-ply CFRP (0°/90°) by using a cross-point probe, we performed an FEM (finite element method) analysis of electromagnetic fields. We investigated the nature of the flaw signals and the differences in eddy current distributions between materials with and without flaws.展开更多
Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conve...Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.展开更多
Automatic defect detection in X-ray images is currently a focus of much research at home and abroad. The technology requires computerized image processing, image analysis, and pattern recognition. This paper describes...Automatic defect detection in X-ray images is currently a focus of much research at home and abroad. The technology requires computerized image processing, image analysis, and pattern recognition. This paper describes an image processing method for automatic defect detection using image data fusion which synthesizes several methods including edge extraction, wave profile analyses, segmentation with dynamic threshold, and weld district extraction. Test results show that defects that induce an abrupt change over a predefined extent of the image intensity can be segmented regardless of the number, location, shape or size. Thus, the method is more robust and practical than the current methods using only one method.展开更多
文摘Electromagnetic self-induction theory and computer are adopted and study of online monitoring technique for wire-core belt is conducted, the study shows that there is direct proportion between distance Ⅰ of broken ends and output volt Ⅴ, when Ⅰ ≥60 mm, Ⅴ keeps constantly, the running speed v of wire-core belt has no big effect on output volt Ⅴ, there is inverse proportion between the height h from probe to the surface of the belt and output volt Ⅴ, when h≥30 mm, Ⅴ tends to be zero. Based on the test result, on-line monitoring installation is developed, the practice proved that the accuracy of broken wire monitoring can be above 95%, the monitoring accuracy of joint twitch can be 0 .04 Ⅴ/mm.
文摘This paper describes the results of a project on the inspection of visually inaccessible areas of nuclear containment liners and shells via the advanced Magnetostrictive sensor (MsS) Guided Wave (GW) nondestructive inspection technique. Full scale mockups that simulated shell and liner regions of interest in the containment of both a Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) were constructed. Inspections were performed on the mock-ups in three stages to discern the signal attenuation caused by flaws and caused by concrete in the structures. The effect of concrete being in close proximity to the liner and shell was determined, and the capability to detect and size flaws via this GW technique was evaluated.
文摘CFRP (carbon fiber reinforced plastic) is used extensively in aircraft and spacecraft structures, because of its excellent mechanical properties. Ultrasonic testing, which is used as a non-destructive testing technique for CFRP, requires a contact medium. In contrast, eddy current testing does not require a contact medium, and when used for CFRP testing it has advantages not available with other techniques. CFRP is a laminate, with each layer being anisotropically conductive, and the distribution of the induced eddy current is yet to be determined. Here, to determine the eddy current distribution in the detection of flaws in cross-ply CFRP (0°/90°) by using a cross-point probe, we performed an FEM (finite element method) analysis of electromagnetic fields. We investigated the nature of the flaw signals and the differences in eddy current distributions between materials with and without flaws.
基金supported by the National Natural Science Foundation of China(51705470).
文摘Purpose–This study aims to solve the problem of weld quality inspection,for the aluminum alloy profile welding structure of high-speed train body has complex internal shape and thin plate thickness(2–4 mm),the conventional nondestructive testing method of weld quality is difficult to implement.Design/methodology/approach–In order to solve this problem,the ultrasonic creeping wave detection technology was proposed.The impact of the profile structure on the creeping wave detection was studied by designing profile structural test blocks and artificial simulation defect test blocks.The detection technology was used to test the actual welded test blocks,and compared with the results of X-ray test and destructive test(tensile test)to verify the accuracy of the ultrasonic creeping wave test results.Findings–It is indicated that that X-ray has better effect on the inspection of porosities and incomplete penetration defects.However,due to special detection method and protection,the detection speed is slow,which cannot meet the requirements of field inspection of the welding structure of aluminum alloy thin-walled profile for high-speed train body.It can be used as an auxiliary detection method for a small number of sampling inspection.The ultrasonic creeping wave can be used to detect the incomplete penetration welds with the equivalent of 0.25 mm or more,the results of creeping wave detection correspond well with the actual incomplete penetration defects.Originality/value–The results show that creeping wave detection results correspond well with the actual non-penetration defects and can be used for welding quality inspection of aluminum alloy thin-wall profile composite welding joints.It is recommended to use the echo amplitude of the 10 mm 30.2 mm 30.5 mm notch as the criterion for weld qualification.
基金Supported by the Specialized Research Fund for the Doctoral Pro-gram of Higher Education of MOE, P.R.C. (No. 20050003041) and the National Natural Science Foundation of China (No. 50275083)
文摘Automatic defect detection in X-ray images is currently a focus of much research at home and abroad. The technology requires computerized image processing, image analysis, and pattern recognition. This paper describes an image processing method for automatic defect detection using image data fusion which synthesizes several methods including edge extraction, wave profile analyses, segmentation with dynamic threshold, and weld district extraction. Test results show that defects that induce an abrupt change over a predefined extent of the image intensity can be segmented regardless of the number, location, shape or size. Thus, the method is more robust and practical than the current methods using only one method.