Qianlong Xuan paper, lost two hundred years ago, was reproduced by engineers in Red-Star Xuan Paper Limited Liability Company of China. Its remarkable performance and profound historical value are highly regarded by a...Qianlong Xuan paper, lost two hundred years ago, was reproduced by engineers in Red-Star Xuan Paper Limited Liability Company of China. Its remarkable performance and profound historical value are highly regarded by artists and the paper commands very high price in the commercial market. Ink penetrates and spreads optimally in the paper and the words exhibit clear edges with small fluctuations because of the desirable wettability and wicking. These characteristics make it stand out from three Xuan paper samples. The good wettahility, verified by contact angle measurements, is an essential prerequisite to strong wicking. Attenuated total reflectance Fourier-transform infrared spectroscopy is performed to determine the chemical structure of Qianlong Xuan paper and the relatively large hydrogen bonding ratio contributes to the hydrophilicity. The microstructure investigated by scanning electron microscopy and atomic force microscopy reveals wide fibers and a uniform fiber arrangement with good connectivity, dense network, as well as rough fiber surface. These unique properties endow Qianlong Xuan paper with strong wicking to improve the ink expression.展开更多
基金supported by the National Basic Research Programs of China (No. 2011CB922102)the National Natural Science Foundation of China (No. 11374141)the City University of Hong Kong Strategic Research Grant (SRG, No. 7004188)
文摘Qianlong Xuan paper, lost two hundred years ago, was reproduced by engineers in Red-Star Xuan Paper Limited Liability Company of China. Its remarkable performance and profound historical value are highly regarded by artists and the paper commands very high price in the commercial market. Ink penetrates and spreads optimally in the paper and the words exhibit clear edges with small fluctuations because of the desirable wettability and wicking. These characteristics make it stand out from three Xuan paper samples. The good wettahility, verified by contact angle measurements, is an essential prerequisite to strong wicking. Attenuated total reflectance Fourier-transform infrared spectroscopy is performed to determine the chemical structure of Qianlong Xuan paper and the relatively large hydrogen bonding ratio contributes to the hydrophilicity. The microstructure investigated by scanning electron microscopy and atomic force microscopy reveals wide fibers and a uniform fiber arrangement with good connectivity, dense network, as well as rough fiber surface. These unique properties endow Qianlong Xuan paper with strong wicking to improve the ink expression.