期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
基于轻量级YOLO-v4模型的变电站数字仪表检测识别 被引量:6
1
作者 华泽玺 施会斌 +3 位作者 罗彦 张子原 李威龙 唐永川 《西南交通大学学报》 EI CSCD 北大核心 2024年第1期70-80,共11页
为了在变电站实际场景中准确获取数字仪表读数,智能管控变电站的安全风险,同时推动变电站智能化发展,以实际场景中变电站数字仪表作为研究对象,综合考虑实时性及准确度等,提出一种基于轻量级YOLOv4模型的变电站数字仪表检测识别方法.首... 为了在变电站实际场景中准确获取数字仪表读数,智能管控变电站的安全风险,同时推动变电站智能化发展,以实际场景中变电站数字仪表作为研究对象,综合考虑实时性及准确度等,提出一种基于轻量级YOLOv4模型的变电站数字仪表检测识别方法.首先,通过从鄂尔多斯变电站实际拍摄变电站数字仪表图像数据,使用Albumentations框架对数字仪表图像进行数据扩充,构建变电站数字仪表目标检测数据集;然后,以YOLO-v4网络为基础,结合注意力机制构建一个有效通道注意(efficient channel attention,ECA)改进的深度可分离卷积模块(ECA-bneck-m);最后,提出一个轻量级YOLO-v4模型,进行模型大小与性能的对比实验.实验结果表明:本文方法可以在几乎不损失检测准确度的情况下,将整个模型存储大小压缩为原先的1/5,同时将模型推理速度从24.0帧/s提升至36.9帧/s,其实时性能够满足实际变电站检测识别的工程需要. 展开更多
关键词 数字仪表 检测识别 yolo-v4 数据增强 轻量化
下载PDF
基于改进YOLO-V4网络的浅海生物检测模型 被引量:9
2
作者 毛国君 翁伟栋 +3 位作者 朱晋德 张媛 吴富村 毛玉泽 《农业工程学报》 EI CAS CSCD 北大核心 2021年第12期152-158,共7页
海洋生物智能检测是海洋牧场战略的一部分,而利用水下机器人在复杂的海洋环境中快速、准确地检测海洋生物是关键问题。由于海底环境复杂、亮度分布不均匀、海洋生物与其生存环境的区分性差、生物被遮蔽或半隐蔽等原因,准确识别海洋生物... 海洋生物智能检测是海洋牧场战略的一部分,而利用水下机器人在复杂的海洋环境中快速、准确地检测海洋生物是关键问题。由于海底环境复杂、亮度分布不均匀、海洋生物与其生存环境的区分性差、生物被遮蔽或半隐蔽等原因,准确识别海洋生物是一个巨大的挑战。随着卷积神经网络的发展,基于深度学习的目标检测算法成为主流,出现了如EfficientDet、RetinaNet和YOLO-V4等典型算法。这些基于深度学习的算法都不是完全尽善尽美的,不能完全满足海洋生物识别的需求。在探测精度、运算速度、密集目标探测效果等方面都有提高的空间。该研究建立了一个海洋生物数据集,采集了原始图片1810张,数据增强后得到7240张图片,它们被分成训练集(80%)和测试集(20%)。其次,通过引入跨阶段局部网络的概念,构建了嵌连接EC(Embedded Connection)部件,并将其嵌入到YOLO-V4网络的末端,得到改进的YOLO-V4网络。最后,该研究提出了基于改进YOLO-V4网络的海洋生物检测模型MOD(Marine Organism Detection)。试验结果表明,MOD模型的mAP50、mAP75(交并比阈值为0.5、0.75的精度均值)分别为0.969和0.734,计算量为35.328BFLOPs(十亿浮点运算数),检测帧速为139 ms(具有图形加速器GeForce GTX1650上)。与原始YOLO-V4模型相比,MOD模型的mAP50和mAP75提高了0.9和4.8个百分点,而计算量仅提高0.2%。此外,对比两种模型的准确率-召回率曲线,MOD模型的精确度与召回率的平衡点更接近(1,1),因此MOD模型能学习精度和效率的平衡性更好。该研究直接面向浅海生物的目标检测问题,所提供的方法可以为水下机器人精准执行智能捕捞等任务提供有益参考。 展开更多
关键词 模型 深度学习 目标检测 yolo-v4 跨阶段局部网络 嵌连接
下载PDF
基于优化YOLO-V4的交通标志检测识别方法 被引量:11
3
作者 潘惠苹 王敏琴 张福泉 《计算机科学》 CSCD 北大核心 2022年第11期179-184,共6页
交通标志检测识别是自动驾驶系统的核心功能,为了实时准确地识别交通标志,在YOLO-V4的基础上进行改进,并结合了空间金字塔池化(Spatial Pyramid Pooling,SPP)模块。首先,为了提高分辨率和增大感受野,将原特征图3个尺度的分辨率更改为26&... 交通标志检测识别是自动驾驶系统的核心功能,为了实时准确地识别交通标志,在YOLO-V4的基础上进行改进,并结合了空间金字塔池化(Spatial Pyramid Pooling,SPP)模块。首先,为了提高分辨率和增大感受野,将原特征图3个尺度的分辨率更改为26×26和52×52;然后,在连接层中添加SPP模块,消除网络对固定尺度的约束,在最大池化层中得到最优特征,改善网络性能。实验中,利用行车记录仪采集各种交通标志图像,与其他优秀方法相比,所提方法取得了更优的性能,其平均检测识别准确度达99.0%,平均检测时间为0.449 s,达到了实时检测的要求。 展开更多
关键词 交通标志识别 感受野 yolo-v4 最大池化 空间金字塔池化 分辨率
下载PDF
基于超分辨率模型与YOLO-V4的织物疵点检测 被引量:1
4
作者 王峰 胥光申 +1 位作者 黄乾玮 余海洋 《轻工机械》 CAS 2022年第5期60-66,共7页
针对工业条件限制下采集的印花布数据集图像分辨率低、检测效果差等问题,课题组提出基于超分辨率模型SRGAN与YOLO-V4网络的织物疵点检测方法,并对SRGAN算法进行改进。课题组首先使用改进的SRGAN算法对原数据集进行超分辨率重构,提高图... 针对工业条件限制下采集的印花布数据集图像分辨率低、检测效果差等问题,课题组提出基于超分辨率模型SRGAN与YOLO-V4网络的织物疵点检测方法,并对SRGAN算法进行改进。课题组首先使用改进的SRGAN算法对原数据集进行超分辨率重构,提高图像分辨率;然后将重构图翻转变化与原图共同作为数据集输入YOLO-V4进行网络训练;最后通过YOLO-V4网络检测印花布表面疵点。实验结果表明:该方法可提高低分辨率织物图疵点检测效果,准确率高达90.29%,比超分辨率重构前提升了13.19%,能实现实时定位疵点的准确位置并输出疵点类别。 展开更多
关键词 织物疵点 超分辨率重构 改进SRGAN算法 数据扩充 yolo-v4网络
下载PDF
基于改进YOLO-v4的果园环境下葡萄检测 被引量:6
5
作者 肖张娜 罗陆锋 +3 位作者 陈明猷 王金海 卢清华 骆少明 《智能化农业装备学报(中英文)》 2023年第2期35-43,共9页
针对果园环境下葡萄生长场景复杂多变,葡萄机器人难以根据视觉检测结果制定无碰撞采摘策略的问题,提出了一种基于改进YOLO-v4的不同遮挡状态葡萄检测方法。首先,根据果园环境下葡萄的生长场景状态,将葡萄分别标记为4种类型:无遮挡葡萄,... 针对果园环境下葡萄生长场景复杂多变,葡萄机器人难以根据视觉检测结果制定无碰撞采摘策略的问题,提出了一种基于改进YOLO-v4的不同遮挡状态葡萄检测方法。首先,根据果园环境下葡萄的生长场景状态,将葡萄分别标记为4种类型:无遮挡葡萄,叶片遮挡葡萄,枝干遮挡葡萄,重叠遮挡葡萄;然后采用YOLO-v4框架作为检测模型,将注意力机制模型(CBAM)分别嵌入YOLO-v4框架中的主干网络(CSPDarknet53,YOLO-C-C)和路径聚合网络(PANet,YOLO-C-P),通过对CSPDarknet53和PANet网络特征提取过程进行目标注意,增强网络对葡萄特征的提取能力,降低复杂场景的干扰,以期达到果园环境下不同遮挡葡萄的高精确度检测;最后通过比较YOLO-C-C和YOLO-C-P网络的识别精确度与F1得分,得到最适合果园遮挡场景下的葡萄检测模型YOLO-C-P。对该方法的性能评估及与其他算法对比试验结果表明,YOLO-C-P模型对无遮挡、叶片遮挡、枝干遮挡、重叠遮挡的葡萄检测精确度分别为91.26%、92.47%、92.41%、90.65%,平均F1得分为91.71%;与同系列模型YOLO-v4、YOLO-X-X、YOLO-v5-X相比,F1得分分别提升了12.62、8.65、5.31个百分点。平均识别一幅图像的时间为0.13s。该研究能够快速、有效识别无遮挡、叶片遮挡、枝干遮挡、重叠遮挡情况下的葡萄,可帮助机器人制定果园环境下的采摘策略(采摘顺序和路径规划),以避免因遮挡导致的碰撞造成采摘失败,为葡萄机器人提供了一种果园采摘辅助决策方法。 展开更多
关键词 葡萄 机器人 yolo-v4 注意力机制 目标检测
下载PDF
基于YOLO-V4的矿用巡检机器人无标定视觉伺服控制系统 被引量:7
6
作者 任百峰 《煤炭技术》 CAS 北大核心 2022年第10期216-218,共3页
针对传统的矿用巡检机器人视觉伺服多是在标定条件下实现,标定参数精度较差,无标定视觉伺服控制系统因其具有更好的适应性、灵活性,越来越得到广泛的认可。基于YOLO-V4算法,采用CSPDarknet53网络结构,对矿用巡检机器人无标定视觉伺服控... 针对传统的矿用巡检机器人视觉伺服多是在标定条件下实现,标定参数精度较差,无标定视觉伺服控制系统因其具有更好的适应性、灵活性,越来越得到广泛的认可。基于YOLO-V4算法,采用CSPDarknet53网络结构,对矿用巡检机器人无标定视觉伺服控制系统进行设计实验,并与YOLO-V3,SSD,AlexNet这3种模型进行分析比较。结果表明:基于YOLO-V4的矿用巡检机器人无标定伺服控制技术切实可行,其识别精度较高,实时性良好,满足当前矿业监测的需求,能够进一步提升作业的安全性。 展开更多
关键词 巡检机器人 yolo-v4 视觉伺服 无标定
下载PDF
基于改进YOLO-V4的贴片二极管表面缺陷检测 被引量:2
7
作者 吴烈权 周志峰 +2 位作者 朱志玲 张维 王勇 《应用光学》 CAS 北大核心 2023年第3期621-627,共7页
针对传统目测法检测贴片二极管表面缺陷效率低下和基于手工特征的目标检测算法模型较浅,以及语义性不高等问题,提出了改进YOLO-V4的贴片二极管表面缺陷检测方法。首先考虑到随着网络加深使梯度消失,以及减少网络中的特征冗余和参数量的... 针对传统目测法检测贴片二极管表面缺陷效率低下和基于手工特征的目标检测算法模型较浅,以及语义性不高等问题,提出了改进YOLO-V4的贴片二极管表面缺陷检测方法。首先考虑到随着网络加深使梯度消失,以及减少网络中的特征冗余和参数量的情况,CSP1模块采用DenseNet替换原网络中的ResNet;其次,为了实现特征信息的跨维度交互,让网络更加关注重要信息,在CSP1模块后引入了三分支注意力机制模块,同时使用FPN+PANet对特征进行融合;并且用CSP2替换CBL×5模块,降低了网络的运算量,提高了算法检测速度;最后优化了Focal Loss函数,对正负样本添加权重,以解决正负样本不平衡的问题。本文算法相较于YOLO-V4的检测精度(precision,P)、召回率(recall,R)和多分类平均精度(mean average precision,mAP),分别高出2.98%,2.65%,2.92%,表明改进YOLO-V4可以有效检测贴片二极管表面缺陷问题。 展开更多
关键词 yolo-v4算法 DenseNet CSP2 三分支注意力机制 Focal Loss函数
下载PDF
改进型YOLO-V4模型的电力杆塔状态评估探索 被引量:3
8
作者 张宝星 毕明利 张壮领 《信息技术》 2021年第8期81-86,91,共7页
针对电网线路存在倒杆、断杆现象以及现有技术巡检方式落后的问题,提出一种新型的电力杆塔状态评估方法,构建出能够实现电力杆塔位置定位的评估方法,并引入电力杆塔检测的YOLO-V4模型深度学习算法,该算法模型包括53个卷积层,具有大量的... 针对电网线路存在倒杆、断杆现象以及现有技术巡检方式落后的问题,提出一种新型的电力杆塔状态评估方法,构建出能够实现电力杆塔位置定位的评估方法,并引入电力杆塔检测的YOLO-V4模型深度学习算法,该算法模型包括53个卷积层,具有大量的3*3、1*1的卷积核,该算法还具有Darknet-53特征提取网络、多尺度融合特征网等,通过评价函数对所应用的YOLO-V4目标检测网络的损失进行检测。试验表明,YOLO-V4模型深度学习算法引入GIoU指标后,相比普通状况平均精度(AP)从97.12%提高到98.94%,准确率(Precision)从94.5%提高至95.6%,召回率(Recall)从97.5%提高至99.2%。 展开更多
关键词 电网线路 状态评估 yolo-v4模型 Darknet-53特征 目标检测
下载PDF
融合定位算法的YOLO-V4模型实现电力杆塔状态评估 被引量:1
9
作者 阮远峰 郭建武 蔡金涛 《电工技术》 2023年第13期32-34,40,共4页
针对电网线路在使用中经常出现断杆、倒杆现象,而现有的技术性检测方式已不能满足要求的问题,给出了一种新的电力杆塔状态评估方法,并建立了改善的YOLO-V4模型,以实现电力杆塔的状态精准定位。CSPDarknet-53模型试验说明,该方法能精准... 针对电网线路在使用中经常出现断杆、倒杆现象,而现有的技术性检测方式已不能满足要求的问题,给出了一种新的电力杆塔状态评估方法,并建立了改善的YOLO-V4模型,以实现电力杆塔的状态精准定位。CSPDarknet-53模型试验说明,该方法能精准定位电力杆塔故障点,偏差小。 展开更多
关键词 电网线路 状态评估 yolo-v4模型 CSPDarknet-53特征 目标检测
下载PDF
Dynamic detection method for falling ears of maize harvester based on improved YOLO-V4
10
作者 Ang Gao Aijun Geng +3 位作者 Zhilong Zhang Ji Zhang Xiaolong Hu Ke Li 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第3期22-32,共11页
Traditional maize ear harvesters mainly rely on manual identification of fallen maize ears,which cannot realize real-time detection of ear falling.The improved You Only Look Once-V4(YOLO-V4)algorithm is combined with ... Traditional maize ear harvesters mainly rely on manual identification of fallen maize ears,which cannot realize real-time detection of ear falling.The improved You Only Look Once-V4(YOLO-V4)algorithm is combined with the channel pruning algorithm to detect the dropped ears of maize harvesters.K-means clustering algorithm is used to obtain a prior box matching the size of the dropped ears,which improves the Intersection Over Union(IOU).Compare the effect of different activation functions on the accuracy of the YOLO-V4 model,and use the Mish activation function as the activation function of this model.Improve the calculation of the regression positioning loss function,and use the CEIOU loss function to balance the accuracy of each category.Use improved Adam optimization function and multi-stage learning optimization technology to improve the accuracy of the YOLO-V4 model.The channel pruning algorithm is used to compress the model and distillation technology is used in the fine-tuning of the model.The final model size was only 10.77%before compression,and the test set mean Average Precision(mAP)was 93.14%.The detection speed was 112 fps,which can meet the need for real-time detection of maize harvester ears in the field.This study can provide technical reference for the detection of the ear loss rate of intelligent maize harvesters. 展开更多
关键词 maize ear detection yolo-v4 channel pruning algorithm real-time detection
原文传递
YOLO V4模型在含硫井站火焰和烟雾检测中的应用 被引量:2
11
作者 向伟 龚云洋 李华昌 《机械设计与制造》 北大核心 2024年第1期261-264,共4页
针对含硫天然气中H2S等腐蚀性物质易导致井站设备、管线等发生泄漏,易引发火灾,但常用的火焰和烟雾检测仪器、算法易受井站复杂环境影响,且含硫井站人工巡检存在一定风险,提出一种基于深度学习目标检测模型的含硫井站火焰和烟雾检测方... 针对含硫天然气中H2S等腐蚀性物质易导致井站设备、管线等发生泄漏,易引发火灾,但常用的火焰和烟雾检测仪器、算法易受井站复杂环境影响,且含硫井站人工巡检存在一定风险,提出一种基于深度学习目标检测模型的含硫井站火焰和烟雾检测方法。首先,将能在移动端实时检测的YOLO V4目标检测模型先对公开火焰、烟雾数据集进行训练;接着,将训练好的模型采用迁移学习方法对井站火焰、烟雾数据集进行训练,提取井站火焰、烟雾特征;最后,经迁移学习训练后的YOLO V4模型对火焰、烟雾检测的平均精度均值高达99.62%,配合巡检机器人将对含硫井站有更好的火灾预警和救援侦察能力。 展开更多
关键词 火灾检测 烟雾检测 深度学习 目标检测 YOLO V4 迁移学习
下载PDF
改进YOLO v4模型在版纳微型猪只行为识别中的研究
12
作者 杨宏宇 陈立畅 +1 位作者 谢小龙 张佳进 《黑龙江畜牧兽医》 CAS 北大核心 2024年第19期46-54,118,119,共11页
为了能够在猪只重叠、遮挡等复杂场景中实现版纳微型猪只行为的准确、高效识别,试验通过改进YOLO v4模型的方法来识别猪只行为,通过视频捕获的方式截取不同角度猪只行为图片,构建行为特征数据集;采用嵌入CBAM注意力机制的Res Net50残差... 为了能够在猪只重叠、遮挡等复杂场景中实现版纳微型猪只行为的准确、高效识别,试验通过改进YOLO v4模型的方法来识别猪只行为,通过视频捕获的方式截取不同角度猪只行为图片,构建行为特征数据集;采用嵌入CBAM注意力机制的Res Net50残差网络结构作为改进YOLO v4模型的主干网络,并引入由深度可分离卷积、批标准化(BN)、Hard Swish激活函数组成的CH模块,代替主干网络中的传统卷积,提升模型检测精度的同时降低参数量;在PANet多尺度特征融合结构中引入双重3层1×1和3×3交替卷积运算替代上、下原采样方式,构成DPANet网络结构,增强对猪只行为图片中细节特征的提取,提高计算效率;基于参数共享理念与二阶段训练的迁移学习方法,优化训练过程以显著缩短训练时间,加速模型的收敛速度。结果表明:改进YOLO v4模型对猪只行为数据集的训练时间仅为6 h,而原模型训练时间则需要19 h;改进YOLO v4模型识别平均精度为93.97%,召回率为96.27%、参数量为0.26×10^(8),与Faster-RCNN、SSD、YOLO v4模型相比,平均精度与召回率分别提升8.88,15.36,8.68个百分点及16.09,41.34,30.40个百分点,参数量最大减少1.11×10^(8)。改进YOLO v4模型对识别爬栏探究、站立行走、进食、躺卧4种行为的准确率达到了98%、88%、92%、97%,与其他3种模型相比,站立行走、进食两种行为的识别效果远大于其他模型。说明改进YOLO v4模型在复杂场景下具有良好的准确性和有效性,能够精准识别猪只的不同行为。 展开更多
关键词 卷积神经网络 图像识别 多目标检测 YOLO v4模型 版纳微型猪
下载PDF
应用YOLO v4模型的赛道锥桶检测与识别方法
13
作者 李强 陶立波 +1 位作者 杨爱喜 Agyei PHILIP 《机械设计与制造》 北大核心 2024年第10期20-24,33,共6页
为快速检测与准确识别赛道锥桶,提出了一种基于YOLO v4模型的赛道锥桶检测与识别方法。首先依据复杂多变的赛道场景采集了多张锥桶图像作为数据集原始数据,在工控机上进行锥桶数据集制作、训练和模型选取;然后搭建基于YOLO v4模型的锥... 为快速检测与准确识别赛道锥桶,提出了一种基于YOLO v4模型的赛道锥桶检测与识别方法。首先依据复杂多变的赛道场景采集了多张锥桶图像作为数据集原始数据,在工控机上进行锥桶数据集制作、训练和模型选取;然后搭建基于YOLO v4模型的锥桶检测与识别系统,选择三种较为常见赛道场景进行实车试验。试验结果表明,所提出的方法在不同光照条件下仍能快速检测并准确识别目标锥桶,特别是在锥桶较为密集且多个锥桶目标重叠的场景下,置信度达到0.91以上,具有较强的鲁棒性,且实时检测的平均帧率达到35f/s,能够满足无人驾驶方程式赛车对感知系统准确性和实时性的需求。 展开更多
关键词 无人驾驶方程式赛车 YOLO v4 赛道锥桶 目标检测 锥桶识别
下载PDF
基于融合坐标信息的改进YOLO V4模型识别奶牛面部 被引量:23
14
作者 杨蜀秦 刘杨启航 +3 位作者 王振 韩媛媛 王勇胜 蓝贤勇 《农业工程学报》 EI CAS CSCD 北大核心 2021年第15期129-135,共7页
为实现奶牛个体的准确识别,基于YOLO V4目标检测网络,提出了一种融合坐标信息的奶牛面部识别模型。首先,采集71头奶牛面部图像数据集,并通过数据增强扩充提高模型的泛化性能。其次,在YOLO V4网络的特征提取层和检测头部分分别引入坐标... 为实现奶牛个体的准确识别,基于YOLO V4目标检测网络,提出了一种融合坐标信息的奶牛面部识别模型。首先,采集71头奶牛面部图像数据集,并通过数据增强扩充提高模型的泛化性能。其次,在YOLO V4网络的特征提取层和检测头部分分别引入坐标注意力机制和包含坐标通道的坐标卷积模块,以增强模型对目标位置的敏感性,提高识别精度。试验结果表明,改进的YOLO V4模型能够有效提取奶牛个体面部特征,平均精度均值为93.68%,平均帧率为18帧/s,虽然检测速度低于无锚框的CenterNet,但平均精度均值提高了10.92%;与Faster R-CNN和SSD模型相比,在检测速度提高的同时,精度分别提高了1.51和16.32个百分点;与原始YOLO V4相比,mAP提高0.89%,同时检测速度基本不变。该研究为奶牛精准养殖中的牛脸图像识别提供了一种有效的技术支持。 展开更多
关键词 图像识别 动物 奶牛面部 YOLO V4 注意力机制 坐标卷积
下载PDF
基于改进YOLO v4的自然环境苹果轻量级检测方法 被引量:39
15
作者 王卓 王健 +3 位作者 王枭雄 时佳 白晓平 赵泳嘉 《农业机械学报》 EI CAS CSCD 北大核心 2022年第8期294-302,共9页
针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,... 针对苹果采摘机器人识别算法包含复杂的网络结构和庞大的参数体量,严重限制检测模型的响应速度问题,本文基于嵌入式平台,以YOLO v4作为基础框架提出一种轻量化苹果实时检测方法(YOLO v4-CA)。该方法使用MobileNet v3作为特征提取网络,并在特征融合网络中引入深度可分离卷积,降低网络计算复杂度;同时,为弥补模型简化带来的精度损失,在网络关键位置引入坐标注意力机制,强化目标关注以提高密集目标检测以及抗背景干扰能力。在此基础上,针对苹果数据集样本量小的问题,提出一种跨域迁移与域内迁移相结合的学习策略,提高模型泛化能力。试验结果表明,改进后模型的平均检测精度为92.23%,在嵌入式平台上的检测速度为15.11 f/s,约为改进前模型的3倍。相较于SSD300与Faster R-CNN,平均检测精度分别提高0.91、2.02个百分点,在嵌入式平台上的检测速度分别约为SSD300和Faster R-CNN的1.75倍和12倍;相较于两种轻量级目标检测算法DY3TNet与YOLO v5s,平均检测精度分别提高7.33、7.73个百分点。因此,改进后的模型能够高效实时地对复杂果园环境中的苹果进行检测,适宜在嵌入式系统上部署,可以为苹果采摘机器人的识别系统提供解决思路。 展开更多
关键词 采摘机器人 苹果检测 YOLO v4 轻量化 注意力机制 迁移学习
下载PDF
基于YOLO v4卷积神经网络的农田苗草识别研究 被引量:22
16
作者 权龙哲 夏福霖 +4 位作者 姜伟 李海龙 李恒达 娄朝霞 李传文 《东北农业大学学报》 CAS CSCD 北大核心 2021年第7期89-98,共10页
农田杂草是影响农作物生长的主要因素之一,农田杂草的有效防治与农作物产量息息相关。复杂田间环境下,精准识别玉米秧苗与农田杂草能够指导除草装备作业更加经济和高效。为提高农田目标识别精度和效率,文章基于深度学习技术的目标检测方... 农田杂草是影响农作物生长的主要因素之一,农田杂草的有效防治与农作物产量息息相关。复杂田间环境下,精准识别玉米秧苗与农田杂草能够指导除草装备作业更加经济和高效。为提高农田目标识别精度和效率,文章基于深度学习技术的目标检测方法,首先使用多苗期、多时段和单一拍摄角度的图像采集方式并配合数据增强方法制作一个特征丰富的数据集。通过减少YOLOv4网络的输出张量为13×13和52×52两个尺度匹配玉米苗和杂草,并用制作数据集作网络训练。训练结果表明,改进后YOLOv4网络训练得到的检测模型在综合性能上优于YOLO v3、原本YOLO v4和主干网络为VGG19的Faster R-CNN;其F_(1)值为0.828,较修改前提升0.031,检测时间缩短0.014s。此外,根据试验可知数据量和数据增强方式均对模型产生不同程度影响;不同类别的目标进行单一训练比多类别目标组合训练得到检测效果更好。 展开更多
关键词 玉米苗 杂草 目标检测 深度学习 YOLO v4网络
下载PDF
改进YOLO v4模型在鱼类目标检测上的应用研究 被引量:8
17
作者 郑宗生 李云飞 +2 位作者 卢鹏 邹国良 王振华 《渔业现代化》 CSCD 2022年第1期82-88,96,共8页
鱼类目标检测对渔业精准养殖、生产自动化、资源调查及鱼行为的研究等具有重要的意义。为了能快速准确地得到鱼类目标的位置和所属类别,提出了一种改进YOLO v4模型的鱼类目标检测方法,在CIoU(Complete Intersection over Union)损失函... 鱼类目标检测对渔业精准养殖、生产自动化、资源调查及鱼行为的研究等具有重要的意义。为了能快速准确地得到鱼类目标的位置和所属类别,提出了一种改进YOLO v4模型的鱼类目标检测方法,在CIoU(Complete Intersection over Union)损失函数基础上构建了新的损失项,改进的损失函数使真实框与相交框呈相同宽高比进行回归,同时通过设置多锚点框模式,增强在特定尺寸面积上的检测效果。结果显示:改进YOLO v4模型的mAP(mean Average Precision)比原模型有较大提升,在自建数据集、Fish4Knowledge数据集和NCFM数据集上的mAP分别达到了94.22%、99.52%、92.16%。研究表明,改进YOLO v4模型可以快速准确地检测到鱼的位置和类别,检测速度满足实时的要求,可以为渔业精准养殖等提供参考。 展开更多
关键词 鱼类目标检测 CIoU损失 损失函数 YOLO v4模型
下载PDF
基于改进YOLO v4模型的马铃薯中土块石块检测方法 被引量:16
18
作者 王相友 李晏兴 +3 位作者 杨振宇 张蒙 王荣铭 崔丽霞 《农业机械学报》 EI CAS CSCD 北大核心 2021年第8期241-247,262,共8页
为实现收获后含杂马铃薯中土块石块的快速检测和剔除,提出了一种基于改进YOLO v4模型的马铃薯中土块石块检测方法。YOLO v4模型以CSPDarknet53为主干特征提取网络,在保证检测准确率的前提下,利用通道剪枝算法对模型进行剪枝处理,以简化... 为实现收获后含杂马铃薯中土块石块的快速检测和剔除,提出了一种基于改进YOLO v4模型的马铃薯中土块石块检测方法。YOLO v4模型以CSPDarknet53为主干特征提取网络,在保证检测准确率的前提下,利用通道剪枝算法对模型进行剪枝处理,以简化模型结构、降低运算量。采用Mosaic数据增强方法扩充图像数据集(8621幅图像),对模型进行微调,实现了马铃薯中土块石块的检测。测试表明,剪枝后模型总参数量减少了94.37%,模型存储空间下降了187.35 MB,前向运算时间缩短了0.02 s,平均精度均值(Mean average precision,mAP)下降了2.1个百分点,说明剪枝处理可提升模型性能。为验证模型的有效性,将本文模型与5种深度学习算法进行比较,结果表明,本文算法mAP为96.42%,比Faster R-CNN、Tiny-YOLO v2、YOLO v3、SSD分别提高了11.2、11.5、5.65、10.78个百分点,比YOLO v4算法降低了0.04个百分点,模型存储空间为20.75 MB,检测速度为78.49 f/s,满足实际生产需要。 展开更多
关键词 马铃薯 石块检测 通道剪枝 YOLO v4
下载PDF
基于MSRCP与改进YOLO v4的躺卧奶牛个体识别方法 被引量:6
19
作者 司永胜 肖坚星 +1 位作者 刘刚 王克俭 《农业机械学报》 EI CAS CSCD 北大核心 2023年第1期243-250,262,共9页
奶牛的躺卧率可以反映奶牛的舒适度和健康情况,躺卧奶牛的个体识别是自动监测奶牛躺卧率的基础。本文提出了一种基于改进YOLO v4模型识别非限制环境下躺卧奶牛个体的方法。为实现对躺卧奶牛全天的准确个体识别,首先对18:00—07:00的图... 奶牛的躺卧率可以反映奶牛的舒适度和健康情况,躺卧奶牛的个体识别是自动监测奶牛躺卧率的基础。本文提出了一种基于改进YOLO v4模型识别非限制环境下躺卧奶牛个体的方法。为实现对躺卧奶牛全天的准确个体识别,首先对18:00—07:00的图像采用MSRCP(Multi-scale retinex with chromaticity preservation)算法进行图像增强,改善低光照环境下的图像质量。其次,在YOLO v4模型的主干网络中融入RFB-s结构,改善模型对奶牛身体花纹变化的鲁棒性。最后,为提高模型对身体花纹相似奶牛的识别准确率,改进了原模型的非极大抑制(Non-maximum suppression,NMS)算法。利用72头奶牛的图像数据集进行了奶牛个体识别实验。结果表明,相对于YOLO v4模型,在未降低处理速度的前提下,本文改进YOLO v4模型的精准率、召回率、mAP、F1值分别提高4.66、3.07、4.20、3.83个百分点。本文研究结果为奶牛精细化养殖中奶牛健康监测提供了一种有效的技术支持。 展开更多
关键词 躺卧奶牛 个体识别 机器视觉 改进YOLO v4
下载PDF
基于改进YOLO v4网络的马铃薯自动育苗叶芽检测方法 被引量:8
20
作者 修春波 孙乐乐 《农业机械学报》 EI CAS CSCD 北大核心 2022年第6期265-273,共9页
为提高马铃薯幼苗叶芽检测识别的准确率,提高自动育苗生产系统的工作效率,提出了基于YOLO v4网络的改进识别网络。将YOLO v4特征提取部分CSPDarknet53中的残差块(Residual Block)替换为Res2Net,并采用深度可分离卷积操作减小计算量。由... 为提高马铃薯幼苗叶芽检测识别的准确率,提高自动育苗生产系统的工作效率,提出了基于YOLO v4网络的改进识别网络。将YOLO v4特征提取部分CSPDarknet53中的残差块(Residual Block)替换为Res2Net,并采用深度可分离卷积操作减小计算量。由此,在增大卷积神经网络感受野的同时,能够获得叶芽更加细小的特征信息,减少马铃薯叶芽的漏检率。设计了基于扩张卷积的空间特征金字塔(DSPP模块),并嵌入和替换到特征提取部分的3个特征层输出中,用于提高马铃薯叶芽目标识别定位的准确性。采用消融实验对改进策略的有效性进行了验证分析。实验结果表明,改进的识别网络对马铃薯叶芽检测的精确率为95.72%,召回率为94.91%,综合评价指标F1值为95%,平均精确率为96.03%。与Faster RCNN、YOLO v3、YOLO v4网络相比,改进的识别网络具有更好的识别性能,从而可有效提高马铃薯自动育苗生产系统的工作效率。 展开更多
关键词 深度学习 马铃薯 叶芽检测 扩张卷积 感受野 YOLO v4
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部