针对当前基于深度神经网络的目标检测往往存在计算复杂度高、对硬件要求苛刻、难以在嵌入式平台和移动智能设备上运行且运行速率低等问题,提出一种基于YOLOv4(You Only Look Once Version4)的轻量化混合神经网络。此混合网络主干特征提...针对当前基于深度神经网络的目标检测往往存在计算复杂度高、对硬件要求苛刻、难以在嵌入式平台和移动智能设备上运行且运行速率低等问题,提出一种基于YOLOv4(You Only Look Once Version4)的轻量化混合神经网络。此混合网络主干特征提取网络采用轻量级MobileNeXt网络模型,并使用改进后RFB(Receptive Field Block)模型来增强特征提取网络,进而增大感受野;引入通道注意力机制SE(Squeeze-and-Excitation)模块,过滤筛选出高质量信息,使整个网络模型对特征提取更加高效。实验结果表明,在PASCAL VOC 2007数据集上,基于YOLOv4的轻量化混合神经网络模型大小仅占20.6 MB,很大程度上降低了原YOLOv4模型参数量,mAP(mean Average Precision)达到82.51%,帧处理速率为29.7 frame/s。,有较好的检测效果和较强的鲁棒性。展开更多
针对目前安检场景中违禁品种类复杂、人工检查效率低易出错等问题,文章提出一种名为Res152-YOLO的网络架构,该架构基于YOLOv4(You Only Look Once)优化目标检测网络.为提高对X光图像中危险品的检测精度,Res152-YOLO采用ResNet-152网络...针对目前安检场景中违禁品种类复杂、人工检查效率低易出错等问题,文章提出一种名为Res152-YOLO的网络架构,该架构基于YOLOv4(You Only Look Once)优化目标检测网络.为提高对X光图像中危险品的检测精度,Res152-YOLO采用ResNet-152网络代替原YOLOv4中的CSPDarknet-53网络,将改进后的ResNet残差网络与YOLOv4网络连接.实验中利用YOLOv4、Res152-YOLO等一系列网络在同一数据集上进行对比实验,分别比较上述网络的损失曲线、对各类危险品的检测性能以及各网络的总体性能.结果表明,Res152-YOLO网络在以上实验中性能优于原YOLOv4网络,并且满足安检设备的帧率要求.改进后的网络有效提高了安检的准确率,能够消除一定的安全隐患.展开更多
文摘针对当前基于深度神经网络的目标检测往往存在计算复杂度高、对硬件要求苛刻、难以在嵌入式平台和移动智能设备上运行且运行速率低等问题,提出一种基于YOLOv4(You Only Look Once Version4)的轻量化混合神经网络。此混合网络主干特征提取网络采用轻量级MobileNeXt网络模型,并使用改进后RFB(Receptive Field Block)模型来增强特征提取网络,进而增大感受野;引入通道注意力机制SE(Squeeze-and-Excitation)模块,过滤筛选出高质量信息,使整个网络模型对特征提取更加高效。实验结果表明,在PASCAL VOC 2007数据集上,基于YOLOv4的轻量化混合神经网络模型大小仅占20.6 MB,很大程度上降低了原YOLOv4模型参数量,mAP(mean Average Precision)达到82.51%,帧处理速率为29.7 frame/s。,有较好的检测效果和较强的鲁棒性。
文摘针对目前安检场景中违禁品种类复杂、人工检查效率低易出错等问题,文章提出一种名为Res152-YOLO的网络架构,该架构基于YOLOv4(You Only Look Once)优化目标检测网络.为提高对X光图像中危险品的检测精度,Res152-YOLO采用ResNet-152网络代替原YOLOv4中的CSPDarknet-53网络,将改进后的ResNet残差网络与YOLOv4网络连接.实验中利用YOLOv4、Res152-YOLO等一系列网络在同一数据集上进行对比实验,分别比较上述网络的损失曲线、对各类危险品的检测性能以及各网络的总体性能.结果表明,Res152-YOLO网络在以上实验中性能优于原YOLOv4网络,并且满足安检设备的帧率要求.改进后的网络有效提高了安检的准确率,能够消除一定的安全隐患.