[目的/意义]借助智能化识别及图像处理等技术来实现对移栽后蔬菜状态的识别和分析,将会极大提高识别效率。为了实现甘蓝大田移栽情况的实时监测和统计,提高甘蓝移栽后的成活率以及制定后续工作方案,减少人力和物力的浪费,研究一种自然...[目的/意义]借助智能化识别及图像处理等技术来实现对移栽后蔬菜状态的识别和分析,将会极大提高识别效率。为了实现甘蓝大田移栽情况的实时监测和统计,提高甘蓝移栽后的成活率以及制定后续工作方案,减少人力和物力的浪费,研究一种自然环境下高效识别甘蓝移栽状态的算法。[方法]采集移栽后的甘蓝图像,利用数据增强方式对数据进行处理,输入YOLOv8s(You Only Look Once Version 8s)算法中进行识别,通过结合可变形卷积,提高算法特征提取和目标定位能力,捕获更多有用的目标信息,提高对目标的识别效果;通过嵌入多尺度注意力机制,降低背景因素干扰,增加算法对目标区域的关注,提高模型对不同尺寸的甘蓝的检测能力,降低漏检率;通过引入Focal-EIoU Loss(Focal Extended Intersection over Union Loss),优化算法定位精度,提高算法的收敛速度和定位精度。[结果和讨论]提出的算法经过测试,对甘蓝移栽状态的召回率R值和平均精度均值(Mean Average Precision,mAP)分别达到92.2%和96.2%,传输速率为146帧/s,可满足实际甘蓝移栽工作对移栽状态识别精度和速度的要求。[结论]提出的甘蓝移栽状态检测方法能够实现对甘蓝移栽状态识别的准确识别,可以提升移栽质量测量效率,减少时间和人力投入,提高大田移栽质量调查的自动化程度。展开更多
从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(conce...从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(concentration-based attention module)注意力机制改进卷积模块,解决注意力权重参数在感受野特征中共享问题的同时,在通道和空间维度加上注意力权重,增强特征提取能力;通过引入大型可分离卷积注意力思想,改造空间金字塔池化层,增加不同层级特征间的信息交融;优化颈部结构,增加具有丰富小目标语义信息的特征层;使用inner-IoU损失函数的思想改进MPDIoU(minimum point distance based IoU)函数,以innerMPDIoU代替原损失函数,提升对困难样本的学习能力。实验结果表明,改进后的YOLOv8s模型在VisDrone数据集上mAP、P、R分别提升了16.1%、9.3%、14.9%,性能超过YOLOv8m,可以有效应用于无人机平台上的目标检测任务。展开更多
红外图像目标检测在交通领域中有很重要的应用价值,然而,由于红外图像存在分辨率低、缺乏颜色信息、对比度差、特征模糊的特点,导致现有模型在检测红外车辆与行人时精度不高。为此,文中对YOLOv8s进行了改进,首先对特征融合机制进行改进...红外图像目标检测在交通领域中有很重要的应用价值,然而,由于红外图像存在分辨率低、缺乏颜色信息、对比度差、特征模糊的特点,导致现有模型在检测红外车辆与行人时精度不高。为此,文中对YOLOv8s进行了改进,首先对特征融合机制进行改进,在网络中添加小目标检测层,充分利用目标的浅层特征信息,提高对小目标检测的准确性。其次引入了SPD(Space to Depth)细粒化模块来代替YOLOv8s中的3×3卷积进行下采样,避免了3×3卷积下采样导致红外图像细粒度信息丢失。并且还设计了一个新的混合注意力机制,使网络更好地聚焦感兴趣的区域,减少背景对行人和车辆检测的干扰,增强模型对目标特征的关注度。最后使用Focal EIOU损失函数代替CIOU损失函数,改善了CIOU在特殊情况失效和正负样本不平衡的问题。在交通场景红外图像数据集FLIR_ADAS_v2上进了行实验,验证了算法的有效性。与YOLOv8s相比,改进后的模型mAP@0.5从83.4%提升到了89.3%。展开更多
针对电动车头盔检测模型易受天气、视角等因素影响,存在漏检、误检、精度低和实时检测效率差等问题,基于原始YOLO第8小版(you only look once version 8 small, YOLOv8s)模型进行改进,提出改进YOLOv8s模型。主干特征提取网络选用轻量级...针对电动车头盔检测模型易受天气、视角等因素影响,存在漏检、误检、精度低和实时检测效率差等问题,基于原始YOLO第8小版(you only look once version 8 small, YOLOv8s)模型进行改进,提出改进YOLOv8s模型。主干特征提取网络选用轻量级的香草网络(vanilla network, VanillaNet)模块,颈部网络采用轻量级的上采样算子内容感知特征重组(content-aware reassembly of features, CARAFE)模块,增加160像素×160像素的极小目标检测层(tiny object detection layer, tiny)模块并修改损失函数为多尺度预测距离交并比(multi-scale prediction distance intersection over union, MPDIoU)。为验证优化模块的有效性,采用消融实验并对比模型改进前后的差异。结果表明,改进YOLOv8s模型平均精确率均值达95.6%,检测速度提升至102帧/s,检测精度有明显提升且延时有所降低。改进YOLOv8s模型能够在实际场景中有效检测电动车骑乘人员的头盔佩戴情况,对于减少人身伤害、提升道路安全和优化智能交通系统具有重要作用。展开更多
[目的/意义]针对当前玫瑰鲜切花分级仍依赖人工进行简单分级,造成效率低、准确率低等问题,提出一种新的模型Flower-YOLOv8s来实现玫瑰鲜切花的分级检测。[方法]以单一背景下单支玫瑰花的花头作为检测目标,将鲜切花分为A、B、C、D四个等...[目的/意义]针对当前玫瑰鲜切花分级仍依赖人工进行简单分级,造成效率低、准确率低等问题,提出一种新的模型Flower-YOLOv8s来实现玫瑰鲜切花的分级检测。[方法]以单一背景下单支玫瑰花的花头作为检测目标,将鲜切花分为A、B、C、D四个等级,对YOLOv8s(You Only Look Once version 8 small)模型进行了优化改进。首先,构建了一个全新的玫瑰鲜切花分级检测数据集。其次,在YOLOv8s的骨干网络分别添加CBAM(Con⁃volutional Block Attention Module)和SAM(Spatial Attion Module)两个注意力机制模块进行对比实验;选择SAM模块并对其进一步优化,针对模型轻量化需求,再结合深度可分离卷积模块一起添加到C2f结构中,形成Flower-YOLOv8s模型。[结果和讨论]从实验结果来看YOLOv8s添加SAM的模型具有更高的检测精度,mAP@0.5达到86.4%。Flower-YOLOv8s相较于基线模型精确率提高了2.1%,达到97.4%,平均精度均值(mAP)提高了0.7%,同时降低了模型参数和计算量,分别降低2.26 M和4.45 MB;最后使用相同的数据集和预处理方法与Fast-RCNN、Faster-RCNN、SSD、YOLOv3、YOLOv5s和YOLOv8s进行对比实验,证明所提出的实验方法综合强于其他经典YOLO模型。[结论]提出的基于改进YOLOv8s的玫瑰鲜切花分级方法研究能有效提升玫瑰鲜切花分级检测的精准度,为玫瑰鲜切花分级检测技术提供一定的参考价值。展开更多
文摘[目的/意义]借助智能化识别及图像处理等技术来实现对移栽后蔬菜状态的识别和分析,将会极大提高识别效率。为了实现甘蓝大田移栽情况的实时监测和统计,提高甘蓝移栽后的成活率以及制定后续工作方案,减少人力和物力的浪费,研究一种自然环境下高效识别甘蓝移栽状态的算法。[方法]采集移栽后的甘蓝图像,利用数据增强方式对数据进行处理,输入YOLOv8s(You Only Look Once Version 8s)算法中进行识别,通过结合可变形卷积,提高算法特征提取和目标定位能力,捕获更多有用的目标信息,提高对目标的识别效果;通过嵌入多尺度注意力机制,降低背景因素干扰,增加算法对目标区域的关注,提高模型对不同尺寸的甘蓝的检测能力,降低漏检率;通过引入Focal-EIoU Loss(Focal Extended Intersection over Union Loss),优化算法定位精度,提高算法的收敛速度和定位精度。[结果和讨论]提出的算法经过测试,对甘蓝移栽状态的召回率R值和平均精度均值(Mean Average Precision,mAP)分别达到92.2%和96.2%,传输速率为146帧/s,可满足实际甘蓝移栽工作对移栽状态识别精度和速度的要求。[结论]提出的甘蓝移栽状态检测方法能够实现对甘蓝移栽状态识别的准确识别,可以提升移栽质量测量效率,减少时间和人力投入,提高大田移栽质量调查的自动化程度。
文摘从无人机视角进行目标检测,面临图像目标小、分布密集、类别不均衡等难点,且由于无人机的硬件条件限制了模型的规模,导致模型的准确率偏低。提出一种融合多种注意力机制的YOLOv8s改进模型,在骨干网络中引入感受野注意力卷积和CBAM(concentration-based attention module)注意力机制改进卷积模块,解决注意力权重参数在感受野特征中共享问题的同时,在通道和空间维度加上注意力权重,增强特征提取能力;通过引入大型可分离卷积注意力思想,改造空间金字塔池化层,增加不同层级特征间的信息交融;优化颈部结构,增加具有丰富小目标语义信息的特征层;使用inner-IoU损失函数的思想改进MPDIoU(minimum point distance based IoU)函数,以innerMPDIoU代替原损失函数,提升对困难样本的学习能力。实验结果表明,改进后的YOLOv8s模型在VisDrone数据集上mAP、P、R分别提升了16.1%、9.3%、14.9%,性能超过YOLOv8m,可以有效应用于无人机平台上的目标检测任务。
文摘红外图像目标检测在交通领域中有很重要的应用价值,然而,由于红外图像存在分辨率低、缺乏颜色信息、对比度差、特征模糊的特点,导致现有模型在检测红外车辆与行人时精度不高。为此,文中对YOLOv8s进行了改进,首先对特征融合机制进行改进,在网络中添加小目标检测层,充分利用目标的浅层特征信息,提高对小目标检测的准确性。其次引入了SPD(Space to Depth)细粒化模块来代替YOLOv8s中的3×3卷积进行下采样,避免了3×3卷积下采样导致红外图像细粒度信息丢失。并且还设计了一个新的混合注意力机制,使网络更好地聚焦感兴趣的区域,减少背景对行人和车辆检测的干扰,增强模型对目标特征的关注度。最后使用Focal EIOU损失函数代替CIOU损失函数,改善了CIOU在特殊情况失效和正负样本不平衡的问题。在交通场景红外图像数据集FLIR_ADAS_v2上进了行实验,验证了算法的有效性。与YOLOv8s相比,改进后的模型mAP@0.5从83.4%提升到了89.3%。
文摘针对电动车头盔检测模型易受天气、视角等因素影响,存在漏检、误检、精度低和实时检测效率差等问题,基于原始YOLO第8小版(you only look once version 8 small, YOLOv8s)模型进行改进,提出改进YOLOv8s模型。主干特征提取网络选用轻量级的香草网络(vanilla network, VanillaNet)模块,颈部网络采用轻量级的上采样算子内容感知特征重组(content-aware reassembly of features, CARAFE)模块,增加160像素×160像素的极小目标检测层(tiny object detection layer, tiny)模块并修改损失函数为多尺度预测距离交并比(multi-scale prediction distance intersection over union, MPDIoU)。为验证优化模块的有效性,采用消融实验并对比模型改进前后的差异。结果表明,改进YOLOv8s模型平均精确率均值达95.6%,检测速度提升至102帧/s,检测精度有明显提升且延时有所降低。改进YOLOv8s模型能够在实际场景中有效检测电动车骑乘人员的头盔佩戴情况,对于减少人身伤害、提升道路安全和优化智能交通系统具有重要作用。
文摘[目的/意义]针对当前玫瑰鲜切花分级仍依赖人工进行简单分级,造成效率低、准确率低等问题,提出一种新的模型Flower-YOLOv8s来实现玫瑰鲜切花的分级检测。[方法]以单一背景下单支玫瑰花的花头作为检测目标,将鲜切花分为A、B、C、D四个等级,对YOLOv8s(You Only Look Once version 8 small)模型进行了优化改进。首先,构建了一个全新的玫瑰鲜切花分级检测数据集。其次,在YOLOv8s的骨干网络分别添加CBAM(Con⁃volutional Block Attention Module)和SAM(Spatial Attion Module)两个注意力机制模块进行对比实验;选择SAM模块并对其进一步优化,针对模型轻量化需求,再结合深度可分离卷积模块一起添加到C2f结构中,形成Flower-YOLOv8s模型。[结果和讨论]从实验结果来看YOLOv8s添加SAM的模型具有更高的检测精度,mAP@0.5达到86.4%。Flower-YOLOv8s相较于基线模型精确率提高了2.1%,达到97.4%,平均精度均值(mAP)提高了0.7%,同时降低了模型参数和计算量,分别降低2.26 M和4.45 MB;最后使用相同的数据集和预处理方法与Fast-RCNN、Faster-RCNN、SSD、YOLOv3、YOLOv5s和YOLOv8s进行对比实验,证明所提出的实验方法综合强于其他经典YOLO模型。[结论]提出的基于改进YOLOv8s的玫瑰鲜切花分级方法研究能有效提升玫瑰鲜切花分级检测的精准度,为玫瑰鲜切花分级检测技术提供一定的参考价值。