Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains cha...Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains challenging.Here,for the first time,we use the stronger electronegativity of a rare‐Earth yttrium ion(Y^(3+))to induce in situ NiCo‐layered double‐hydroxide nanosheets from NiCo foam(NCF)treated by a dielectric barrier discharge plasma NCF(PNCF),and then obtain nitrogen‐doped YNiCo phosphide(N‐YNiCoP/PNCF)after the phosphating process using radiofrequency plasma in nitrogen.The obtained NYNiCoP/PNCF has a large specific surface area,rich heterointerfaces,and an optimized electronic structure,inducing high electrocatalytic activity in HER(331mV vs.2000mA cm^(−2))and OER(464mV vs.2000mA cm^(−2))reactions in 1MKOH electrolyte.X‐ray absorption spectroscopy and density functional theory quantum chemistry calculations reveal that the coordination number of CoNi decreased with the incorporation of Y atoms,which induce much shorter bonds of Ni and Co ions and promote long‐term stability of N‐YNiCoP in HER and OER under the simulated industrial conditions.Meanwhile,the CoN‐YP_(5) heterointerface formed by plasma N‐doping is the active center for overall water splitting.This work expands the applications of rare‐Earth elements in engineering bifunctional electrocatalysts and provides a new avenue for designing highperformance transition‐metal‐based catalysts in the renewable energy field.展开更多
Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Ed...Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is consid...Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.展开更多
[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Trit...[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Triticum aestivum)) together with the occurrences of Y in soils were investigated to assess its ecotoxicological effects on plant. [Method]Y solutions with various concentrations were sprinkled on soil sam- ples, which were well mixed and then put into culture dishes to culture paddy rice seeds for further evaluation. [Result] The results indicated that 25-100 mg/kg Y treatments significantly increased the biomass (total weight, root weight, shoot weight and leaf weight), chlorophyll (CHL) content and protein content of paddy rice, whereas 200-800 mg/kg Y treatments had a converse effect. Similarly, biomarker for the antioxidant systems including superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) all exhibited similar trends in both shoots and roots of paddy rice. At the same time, the malonaldehyde (MDA) content increased at from 25 to 100 mg/kg and decreased with concentrations of Y from 100 to 800 mg/kg in both shoots and roots of paddy rice. This indicated that Y could stimulate the growth of plant at low concentration, but inhibit the growth at relatively high concen- tration. [Conclusion] The levels of Y were 641+49, 328_+16 and 473_+40 mg/kg in soils collected from mining area, farmland and navel orange orchard respectively. The levels of Y in the investigated area were higher than the benefit level (100 mg/kg), which could cause low biomass as well as low activity of SOD, POD and CAT in paddy rice. Therefore, a more careful use of Y is necessary in crop management.展开更多
The yttrium as a sintering aid was introduced into polycarbosilane(PCS) to prepare yttrium-containing PCS(PYCS).Two types of yttrium-containing SiC fibres,the SiC(OY) fibres and the SiC(Y) fibres,were fabricat...The yttrium as a sintering aid was introduced into polycarbosilane(PCS) to prepare yttrium-containing PCS(PYCS).Two types of yttrium-containing SiC fibres,the SiC(OY) fibres and the SiC(Y) fibres,were fabricated with PYCS.The structural evolution and the associated properties on changing from SiC(OY) to SiC(Y) fibres during the sintering process were studied.The chemical composition of the SiC(OY) fibres is SiC1.53O0.22Y0.005 with an amorphous structure.The composition of SiC(Y) fibres is SiC1.23O0.05Y0.005.The fibres are composed of a large number of β-SiC crystallites with a size of 50 nm and a small amount of α-SiC crystalline.The tensile strength and fracture toughness of the SiC(OY) fibres are 2.25 GPa and 2.37 MPa·m1/2,respectively,and 1.61 GPa,1.91 MPa·m1/2,respectively for SiC(Y) fibres.The SiC(Y) fibres have a higher thermal stability than the SiC(OY) fibres.展开更多
This study aimed to investigate the toxicity of rare earth ion yttrium under the stress of leaching agent ammonium sulfate (NH4)2SO4. [Method] By using earthworms as indicator organisms of environmental pol ution, a...This study aimed to investigate the toxicity of rare earth ion yttrium under the stress of leaching agent ammonium sulfate (NH4)2SO4. [Method] By using earthworms as indicator organisms of environmental pol ution, acute toxic ef-fects of rare earth yttrium on earthworms under the stress of ammonium sulfate were investigated with filter paper contact method. [Result] Under single stress of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=213.41 mg/L and LC50=322.63 mg/L, respectively. ② Under single stress of ammonium sul-fate, the semi-lethal concentration after 48 h and 24 h was LC50=13.89 g/L and LC50=15.05 g/L, respectively. ③ In combined treatment of low concentration (10 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal con-centration after 48 and 24 h was LC50=198.65 g/L and LC50=399.85 g/L, respective-ly; in combined treatment of middle concentration (14 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=167.3 mg/L and LC50=256.73 mg/L, respectively; in combined treatment of high concentration (20 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 h and 24 h was LC50=31.03 mg/L and LC50=127.65 mg/L, respectively. [Conclusion] Low concentration of ammonium sulfate could reduce the toxicity of rare earth yttrium to earthworms and produce certain antagonism against rare earth yttrium; middle concentration ammonium sulfate in-creased the toxicity of rare earth yttrium to earthworms and produced relatively sig-nificant synergistic effects; high concentration ammonium sulfate significantly in-creased the toxicity of rare earth yttrium to earthworms. Compared with ammonium sulfate, dead earthworms exposed to rare earth yttrium were more easily fractured, and living earthworms showed insensitive response to acupuncture.展开更多
For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydroc...For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydrochloric acid solutions with P507 in Shellsol D70 were studied. A chemically-based model was established and the extraction equilibrium constants were determined by the nonlinear least squares method. The proposed model involves the cation exchange reaction and the solvation extraction in the low and high acidity regions, respectively. In the model, the nonideality of the aqueous phase and was corrected by considering the complexation of the metals with Cl- and by replacing with its effective concentration, respectively. This model was verified by fair agreement between the calculated metal distribution ratios and those experimentally obtained in the single metal systems. The feed concentrations for the systems are in wide ranges of the metal (up to 0.1 mol/L), hydrochloric acid (0.07-3.00 mol/L) and the extractant (0.25-1.00 mol/L). The model enables the engineering prediction of the equilibrium distribution ratios with good accuracy in a binary metal system.展开更多
Y2O3 nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently there are many studies focusing on controlling the size and morphology of Y2O3 in order to obtain better materials per...Y2O3 nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently there are many studies focusing on controlling the size and morphology of Y2O3 in order to obtain better materials performance. In present study, yttrium oxyhydroxide precursor was synthesized via a facile solvothermal process through the dissolution-re-crystallization mechanism of Y2O3 raw powders in the ethylenediamine solvent, then nanosized yttrium oxide crystal was prepared from the precursor through post heat treatment process. The effects of solvothermal treatment temperature, holding time, solvent kinds and post heat treatment parameters on crystalline structure, grain shape and size of nanocrystal were investigated by XRD, TEM and TGA-DTA measurements. TEM images reveal that the morphology of product after post heat treatment at 460℃for 12 h is rice-like nanocrystal. XRD shows that this product is pure cubic Y2O3 cphase. Present study reveals that high purity Y2O3 with rice-like morphology can be easily prepared with average size around 30 nm under suitable post heat treatment parameters. In addition, the effects of solvents such as water and ethanol etc. on the crystal structure and morphology were also investigated. It is suggested that dissolution-recrystallization process may be the main mechanism for the formation of nano-sized YOOH precursors under solvothermal reaction condition, and the ethylenediamine solvent is likely to play an important role in controlling the transformation process of yttria precursors to the Y2O3 nanocrystal.展开更多
Polystyrene doped with yttrium ethoxide was prepared. The coordination between yttrium atom and benzene ring in the polystyrene doped with yttrium ethoxide was confirmed by means of IR, XPS.
Yttrium isopropoxide was prepared directly by the reaction between yttrium and isopropyl alcohol using mercuric chloride and iodine as catalyst. Yield is above 83% . This method possesses the merits of easy operationa...Yttrium isopropoxide was prepared directly by the reaction between yttrium and isopropyl alcohol using mercuric chloride and iodine as catalyst. Yield is above 83% . This method possesses the merits of easy operational approach, high product purity, high reaction rate and high production rate. Compared with the previous reported results , the period needed was shortened by 19 h and the yieid increased by 8% . The period needed for preparation is about 5 hows. These results are better than the present report . The dehydrolysis method of isopropyl alcohol and the composition of catalyst were presented.展开更多
The effects of yttrium on the behavior of the lithium-aluminium alloy were studied by cyclic voltammetryand potential step. The electrochemical properties of lithium-aluminium anode were improved by adding yttri-um e...The effects of yttrium on the behavior of the lithium-aluminium alloy were studied by cyclic voltammetryand potential step. The electrochemical properties of lithium-aluminium anode were improved by adding yttri-um element into aluminium before lithium was deposited. Some parameters for preparing lithium-aluminiumelectrodes were also given.展开更多
The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in t...The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in the semi-solid A356 Al alloy were researched. The results indicate that the semi-solid A356 AI alloy with particle-like and rosette-like primary α-Al can be prepared by low temperature pouring from a liquid grain-refined A356 alloy. The grain size and particle morphology of primary α-Al in the A356 Al alloy are markedly improved by the addition of 0.5 wt,% Y. The fining mechanism of Y on the morphology and grain size of the primary α-Al in the semi-solid A356 Al alloy was delved.展开更多
Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was investigated. The influences of doping Y on structure, morphology and electrochemical performance of cathode materials were investigated systematic...Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was investigated. The influences of doping Y on structure, morphology and electrochemical performance of cathode materials were investigated systematically. The results indicated that the mechanisms of Y doping in three cathode materials were different, so the influences on the material performance were different. The crystal structure of the three materials was not changed by Y doping. However, the crystal parameters were influenced. The crystal parameters of LiMn2O4 became smaller, and the interlayer distance of (100) crystal plane of Li1-xV3O8 was lengthened after Y doping. The grain size of Y-doped LiFePO4 became smaller and grain morphology became more regular than that of undoped LiFePO4. It indicated that Y doping had no influence on crystal particle and morphology of LiMn2O4. The morphology of Li1+xV3O8 became irregular and its size became larger with the increase of Y. For LiFePOaand Li1+xV3O8, both the initial discharge capacities and the cyclic performance were improved by Y doping. For LiMn2O4, the cyclic performance became better and the initial discharge capacities declined with increasing Y doping.展开更多
The microstructures and room temperature tensile properties of a series of Ti-47Al-xY (x = 0%, 0.1%, 0.3%, 0.5%, 0.7% and 1.0%(atom fraction)) were investigated systemically. Results show that both the grain size ...The microstructures and room temperature tensile properties of a series of Ti-47Al-xY (x = 0%, 0.1%, 0.3%, 0.5%, 0.7% and 1.0%(atom fraction)) were investigated systemically. Results show that both the grain size and lamellar spacing decrease remarkably with the increase of Y content. When the content of Y is greater than 0.1%, most of the Y elements accumulate along the grain boundaries and some fine particles are uniformly dispersed within the grains in the form of YAl2 compound because of the low solubility and segregation of Y in TiAl alloys. Grain-boundary seg- regation of Y element is more prominent with the increase of Y addition. Good tensile properties are obtained when Y addition ranges from 0.3 % to 0.5 %. The refinement of grain and lamellar structures and dispersion of YAl2 within the grains contribute to the improvement of tensile properties. On the other hand, for high Y-added alloys (over 0.5% Y), tensile properties are obviously deteriorated due to brittle cleavage fracture of the coarse YAl2 network.展开更多
The aging characteristic of Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si alloy containing trace rare earth yttrium was investigated. The results showed that Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si alloy obtained good comprehensive performance...The aging characteristic of Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si alloy containing trace rare earth yttrium was investigated. The results showed that Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si alloy obtained good comprehensive performance after 80% rolling and then aging at 480℃ for 1 h; the hardness and electrical conductivity reached HV 150 and 85.5% IACS, respectively. Increasing aging temperature accelerated aging precipitation. The time for attaining peak hardness was postponed, the precipitates were finer (2-4 nm), and the interparticle spacing was shorter due to yttrium addition. The hardness and electrical conductivity of the Y-containing alloy after 80% deformation and then aging at 480℃ for 45 min reached HV 174 and 82.1% IACS, respectively.展开更多
The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy(TDS) with gas chromatography(GC). The precise nature of the pr...The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy(TDS) with gas chromatography(GC). The precise nature of the precipitate particles newly formed in the weld metal by the addition of Ce and Y to a certain alloy system was characterized. Moreover,the hydrogen trapping efficiency expressed as the reduction of the diffusible hydrogen in the weld metal was analyzed. The results showed that the addition of Ce and/or Y to this alloy system led to the formation of a mixed type of(Ce,Ti)-based oxide,(Y,Ni)-based carbide,or(Ce,Y,Ti)-based oxide particles. Because of the high activation energy of the mixed type of particles(≥ 150 k J/mol),the trapping efficiency for hydrogen was considered to be sufficiently high to effectively reduce the diffusible hydrogen content.展开更多
The effect of yttrium on the microstructure and properties of Ti5.5Al3.5Sn3.0Zr1Nb03Mo03Si (IMI 829) and Ti14Al21Nb high temperature alloys was studied by using optical microscope, SEM and mechanical property testing ...The effect of yttrium on the microstructure and properties of Ti5.5Al3.5Sn3.0Zr1Nb03Mo03Si (IMI 829) and Ti14Al21Nb high temperature alloys was studied by using optical microscope, SEM and mechanical property testing devices. The results show that the microstructure and grains of the two alloys can be fined by adding yttrium. For IMI8290.2Y alloy, the favorable mechanical properties at room temperature and creep properties at 550 are obtained, and the high temperature mechanical properties of Ti14Al21Nb0.1Y alloy are improved as well.展开更多
The valenceofelementyttrium of Y2 O3 Mocathode materialhasbeenstudied by usingther mal weight analysis, X ray diffraction analysis, Scanning electron microscopy and X rayphotoelectronspectrum . It hasbeen proved...The valenceofelementyttrium of Y2 O3 Mocathode materialhasbeenstudied by usingther mal weight analysis, X ray diffraction analysis, Scanning electron microscopy and X rayphotoelectronspectrum . It hasbeen provedthatyttrium oxidecan bereduced by molybdenum carbide. Thereaction between powdered Y2 O3 and Mo2 Ccan happen at 1173 , and Y2 O3may bereduced to metallicyttrium . Afterthepowder mixtureof Y2 O3 and Mo2 Cwasheat treated at1873 K, Yttrium existsin two kinds of chemicalstate- yttrium of zero valence and yttrium ofthreevalences.展开更多
The effect of rare earth element yttrium on the high temperature oxidation resistance of a directionally solidified Ni-base superalloy was studied with scanning electron microscopy(SEM), energy dispersive spectrum(EDS...The effect of rare earth element yttrium on the high temperature oxidation resistance of a directionally solidified Ni-base superalloy was studied with scanning electron microscopy(SEM), energy dispersive spectrum(EDS)and X-ray diffraction(XRD)techniques. The results show that the oxidation resistance of the alloy is substantially improved by adding proper amount of yttrium.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:52177162the Natural Science Foundation of Zhejiang Province,Grant/Award Numbers:LZ22E070003,LQ22E020006+1 种基金the Funding Project for Academic/Technical Leaders of Jiangxi Province,Grant/Award Number:20225BCJ22003the Natural Science Foundation of Jiangxi Province,Grant/Award Number:20212ACB211001。
文摘Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains challenging.Here,for the first time,we use the stronger electronegativity of a rare‐Earth yttrium ion(Y^(3+))to induce in situ NiCo‐layered double‐hydroxide nanosheets from NiCo foam(NCF)treated by a dielectric barrier discharge plasma NCF(PNCF),and then obtain nitrogen‐doped YNiCo phosphide(N‐YNiCoP/PNCF)after the phosphating process using radiofrequency plasma in nitrogen.The obtained NYNiCoP/PNCF has a large specific surface area,rich heterointerfaces,and an optimized electronic structure,inducing high electrocatalytic activity in HER(331mV vs.2000mA cm^(−2))and OER(464mV vs.2000mA cm^(−2))reactions in 1MKOH electrolyte.X‐ray absorption spectroscopy and density functional theory quantum chemistry calculations reveal that the coordination number of CoNi decreased with the incorporation of Y atoms,which induce much shorter bonds of Ni and Co ions and promote long‐term stability of N‐YNiCoP in HER and OER under the simulated industrial conditions.Meanwhile,the CoN‐YP_(5) heterointerface formed by plasma N‐doping is the active center for overall water splitting.This work expands the applications of rare‐Earth elements in engineering bifunctional electrocatalysts and provides a new avenue for designing highperformance transition‐metal‐based catalysts in the renewable energy field.
文摘Short Retraction NoticeThe paper does not meet the standards of "Journal of Applied Mathematics and Physics". This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.Editor guiding this retraction: Prof. Wen-Xiu Ma (EiC of JAMP)The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
基金support by the National Natural Science Foundation of China (Grant Nos. 52061135105 and 12074025)support by the National Natural Science Foundation of China (Grant Nos. 11974079, 12274083, and 12221004)the Shanghai Municipal Science and Technology Basic Research Project (Grant No. 22JC1400200)。
文摘Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.
基金Supported by the National Natural Science Foundation of China(21067003,51364015)the National High-Tech Research and Development Program of China(2012BAC11B07)the Jiangxi Natural Science Foundation(20114BAB203024)~~
文摘[Objective] The effects of yttrium nitrate (YNO3) on biomass and antioxi- dant systems of paddy rice (Yttrium (Y); Oxidative stress; Dismutases (SOD); Per- oxidases (POD), Catalases (CAT), Paddy rice (Triticum aestivum)) together with the occurrences of Y in soils were investigated to assess its ecotoxicological effects on plant. [Method]Y solutions with various concentrations were sprinkled on soil sam- ples, which were well mixed and then put into culture dishes to culture paddy rice seeds for further evaluation. [Result] The results indicated that 25-100 mg/kg Y treatments significantly increased the biomass (total weight, root weight, shoot weight and leaf weight), chlorophyll (CHL) content and protein content of paddy rice, whereas 200-800 mg/kg Y treatments had a converse effect. Similarly, biomarker for the antioxidant systems including superoxide dismutases (SOD), peroxidases (POD) and catalases (CAT) all exhibited similar trends in both shoots and roots of paddy rice. At the same time, the malonaldehyde (MDA) content increased at from 25 to 100 mg/kg and decreased with concentrations of Y from 100 to 800 mg/kg in both shoots and roots of paddy rice. This indicated that Y could stimulate the growth of plant at low concentration, but inhibit the growth at relatively high concen- tration. [Conclusion] The levels of Y were 641+49, 328_+16 and 473_+40 mg/kg in soils collected from mining area, farmland and navel orange orchard respectively. The levels of Y in the investigated area were higher than the benefit level (100 mg/kg), which could cause low biomass as well as low activity of SOD, POD and CAT in paddy rice. Therefore, a more careful use of Y is necessary in crop management.
基金Projects (51175444,50532010) supported by the National Natural Science Foundation of ChinaProject (2011121002) supported by the Fundamental Research Funds for the Central Universities, ChinaProject (2009J1009) supported by Scientific and Technological Innovation Platform of Fujian Province,China
文摘The yttrium as a sintering aid was introduced into polycarbosilane(PCS) to prepare yttrium-containing PCS(PYCS).Two types of yttrium-containing SiC fibres,the SiC(OY) fibres and the SiC(Y) fibres,were fabricated with PYCS.The structural evolution and the associated properties on changing from SiC(OY) to SiC(Y) fibres during the sintering process were studied.The chemical composition of the SiC(OY) fibres is SiC1.53O0.22Y0.005 with an amorphous structure.The composition of SiC(Y) fibres is SiC1.23O0.05Y0.005.The fibres are composed of a large number of β-SiC crystallites with a size of 50 nm and a small amount of α-SiC crystalline.The tensile strength and fracture toughness of the SiC(OY) fibres are 2.25 GPa and 2.37 MPa·m1/2,respectively,and 1.61 GPa,1.91 MPa·m1/2,respectively for SiC(Y) fibres.The SiC(Y) fibres have a higher thermal stability than the SiC(OY) fibres.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,51364015)National High-Tech Research and Development Program of China(GrantNo.2012BAC11B07)+1 种基金Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)Science and Technology Project of the Education Department ofJiangxi Province~~
文摘This study aimed to investigate the toxicity of rare earth ion yttrium under the stress of leaching agent ammonium sulfate (NH4)2SO4. [Method] By using earthworms as indicator organisms of environmental pol ution, acute toxic ef-fects of rare earth yttrium on earthworms under the stress of ammonium sulfate were investigated with filter paper contact method. [Result] Under single stress of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=213.41 mg/L and LC50=322.63 mg/L, respectively. ② Under single stress of ammonium sul-fate, the semi-lethal concentration after 48 h and 24 h was LC50=13.89 g/L and LC50=15.05 g/L, respectively. ③ In combined treatment of low concentration (10 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal con-centration after 48 and 24 h was LC50=198.65 g/L and LC50=399.85 g/L, respective-ly; in combined treatment of middle concentration (14 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 and 24 h was LC50=167.3 mg/L and LC50=256.73 mg/L, respectively; in combined treatment of high concentration (20 g/L) of ammonium sulfate and different doses of rare earth yttrium, the semi-lethal concentration after 48 h and 24 h was LC50=31.03 mg/L and LC50=127.65 mg/L, respectively. [Conclusion] Low concentration of ammonium sulfate could reduce the toxicity of rare earth yttrium to earthworms and produce certain antagonism against rare earth yttrium; middle concentration ammonium sulfate in-creased the toxicity of rare earth yttrium to earthworms and produced relatively sig-nificant synergistic effects; high concentration ammonium sulfate significantly in-creased the toxicity of rare earth yttrium to earthworms. Compared with ammonium sulfate, dead earthworms exposed to rare earth yttrium were more easily fractured, and living earthworms showed insensitive response to acupuncture.
基金Project(P02426)supported by the Japan Society for the Promotion of Science for Postdoctoral Fellowships for Foreign Researchers
文摘For the accurate prediction of equilibrium distribution ratios of rare earth metals during solvent extraction under non-ideal conditions, the extraction equilibria of yttrium (Ⅲ) and europium (Ⅲ) from the hydrochloric acid solutions with P507 in Shellsol D70 were studied. A chemically-based model was established and the extraction equilibrium constants were determined by the nonlinear least squares method. The proposed model involves the cation exchange reaction and the solvation extraction in the low and high acidity regions, respectively. In the model, the nonideality of the aqueous phase and was corrected by considering the complexation of the metals with Cl- and by replacing with its effective concentration, respectively. This model was verified by fair agreement between the calculated metal distribution ratios and those experimentally obtained in the single metal systems. The feed concentrations for the systems are in wide ranges of the metal (up to 0.1 mol/L), hydrochloric acid (0.07-3.00 mol/L) and the extractant (0.25-1.00 mol/L). The model enables the engineering prediction of the equilibrium distribution ratios with good accuracy in a binary metal system.
基金Project supported by SRF for ROCS, SEM (2003-14) and Science and Technology Department of Zhejiang Province (2003C11027)
文摘Y2O3 nanomaterials have been widely used in transparent ceramics and luminescent devices. Recently there are many studies focusing on controlling the size and morphology of Y2O3 in order to obtain better materials performance. In present study, yttrium oxyhydroxide precursor was synthesized via a facile solvothermal process through the dissolution-re-crystallization mechanism of Y2O3 raw powders in the ethylenediamine solvent, then nanosized yttrium oxide crystal was prepared from the precursor through post heat treatment process. The effects of solvothermal treatment temperature, holding time, solvent kinds and post heat treatment parameters on crystalline structure, grain shape and size of nanocrystal were investigated by XRD, TEM and TGA-DTA measurements. TEM images reveal that the morphology of product after post heat treatment at 460℃for 12 h is rice-like nanocrystal. XRD shows that this product is pure cubic Y2O3 cphase. Present study reveals that high purity Y2O3 with rice-like morphology can be easily prepared with average size around 30 nm under suitable post heat treatment parameters. In addition, the effects of solvents such as water and ethanol etc. on the crystal structure and morphology were also investigated. It is suggested that dissolution-recrystallization process may be the main mechanism for the formation of nano-sized YOOH precursors under solvothermal reaction condition, and the ethylenediamine solvent is likely to play an important role in controlling the transformation process of yttria precursors to the Y2O3 nanocrystal.
文摘Polystyrene doped with yttrium ethoxide was prepared. The coordination between yttrium atom and benzene ring in the polystyrene doped with yttrium ethoxide was confirmed by means of IR, XPS.
基金This work was funded by National '863' Foundation (863-715-020-01-01)
文摘Yttrium isopropoxide was prepared directly by the reaction between yttrium and isopropyl alcohol using mercuric chloride and iodine as catalyst. Yield is above 83% . This method possesses the merits of easy operational approach, high product purity, high reaction rate and high production rate. Compared with the previous reported results , the period needed was shortened by 19 h and the yieid increased by 8% . The period needed for preparation is about 5 hows. These results are better than the present report . The dehydrolysis method of isopropyl alcohol and the composition of catalyst were presented.
文摘The effects of yttrium on the behavior of the lithium-aluminium alloy were studied by cyclic voltammetryand potential step. The electrochemical properties of lithium-aluminium anode were improved by adding yttri-um element into aluminium before lithium was deposited. Some parameters for preparing lithium-aluminiumelectrodes were also given.
基金the Natural Science Foundation of Jiangxi Province, China (No. 0650047)
文摘The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in the semi-solid A356 Al alloy were researched. The results indicate that the semi-solid A356 AI alloy with particle-like and rosette-like primary α-Al can be prepared by low temperature pouring from a liquid grain-refined A356 alloy. The grain size and particle morphology of primary α-Al in the A356 Al alloy are markedly improved by the addition of 0.5 wt,% Y. The fining mechanism of Y on the morphology and grain size of the primary α-Al in the semi-solid A356 Al alloy was delved.
文摘Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was investigated. The influences of doping Y on structure, morphology and electrochemical performance of cathode materials were investigated systematically. The results indicated that the mechanisms of Y doping in three cathode materials were different, so the influences on the material performance were different. The crystal structure of the three materials was not changed by Y doping. However, the crystal parameters were influenced. The crystal parameters of LiMn2O4 became smaller, and the interlayer distance of (100) crystal plane of Li1-xV3O8 was lengthened after Y doping. The grain size of Y-doped LiFePO4 became smaller and grain morphology became more regular than that of undoped LiFePO4. It indicated that Y doping had no influence on crystal particle and morphology of LiMn2O4. The morphology of Li1+xV3O8 became irregular and its size became larger with the increase of Y. For LiFePOaand Li1+xV3O8, both the initial discharge capacities and the cyclic performance were improved by Y doping. For LiMn2O4, the cyclic performance became better and the initial discharge capacities declined with increasing Y doping.
文摘The microstructures and room temperature tensile properties of a series of Ti-47Al-xY (x = 0%, 0.1%, 0.3%, 0.5%, 0.7% and 1.0%(atom fraction)) were investigated systemically. Results show that both the grain size and lamellar spacing decrease remarkably with the increase of Y content. When the content of Y is greater than 0.1%, most of the Y elements accumulate along the grain boundaries and some fine particles are uniformly dispersed within the grains in the form of YAl2 compound because of the low solubility and segregation of Y in TiAl alloys. Grain-boundary seg- regation of Y element is more prominent with the increase of Y addition. Good tensile properties are obtained when Y addition ranges from 0.3 % to 0.5 %. The refinement of grain and lamellar structures and dispersion of YAl2 within the grains contribute to the improvement of tensile properties. On the other hand, for high Y-added alloys (over 0.5% Y), tensile properties are obviously deteriorated due to brittle cleavage fracture of the coarse YAl2 network.
文摘The aging characteristic of Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si alloy containing trace rare earth yttrium was investigated. The results showed that Cu-0.6Cr-0.15Zr-0.05Mg-0.02Si alloy obtained good comprehensive performance after 80% rolling and then aging at 480℃ for 1 h; the hardness and electrical conductivity reached HV 150 and 85.5% IACS, respectively. Increasing aging temperature accelerated aging precipitation. The time for attaining peak hardness was postponed, the precipitates were finer (2-4 nm), and the interparticle spacing was shorter due to yttrium addition. The hardness and electrical conductivity of the Y-containing alloy after 80% deformation and then aging at 480℃ for 45 min reached HV 174 and 82.1% IACS, respectively.
文摘The applicability of Ce and Y as promising candidate elements to form irreversible traps in weld metal was investigated by thermal desorption spectroscopy(TDS) with gas chromatography(GC). The precise nature of the precipitate particles newly formed in the weld metal by the addition of Ce and Y to a certain alloy system was characterized. Moreover,the hydrogen trapping efficiency expressed as the reduction of the diffusible hydrogen in the weld metal was analyzed. The results showed that the addition of Ce and/or Y to this alloy system led to the formation of a mixed type of(Ce,Ti)-based oxide,(Y,Ni)-based carbide,or(Ce,Y,Ti)-based oxide particles. Because of the high activation energy of the mixed type of particles(≥ 150 k J/mol),the trapping efficiency for hydrogen was considered to be sufficiently high to effectively reduce the diffusible hydrogen content.
文摘The effect of yttrium on the microstructure and properties of Ti5.5Al3.5Sn3.0Zr1Nb03Mo03Si (IMI 829) and Ti14Al21Nb high temperature alloys was studied by using optical microscope, SEM and mechanical property testing devices. The results show that the microstructure and grains of the two alloys can be fined by adding yttrium. For IMI8290.2Y alloy, the favorable mechanical properties at room temperature and creep properties at 550 are obtained, and the high temperature mechanical properties of Ti14Al21Nb0.1Y alloy are improved as well.
文摘The valenceofelementyttrium of Y2 O3 Mocathode materialhasbeenstudied by usingther mal weight analysis, X ray diffraction analysis, Scanning electron microscopy and X rayphotoelectronspectrum . It hasbeen provedthatyttrium oxidecan bereduced by molybdenum carbide. Thereaction between powdered Y2 O3 and Mo2 Ccan happen at 1173 , and Y2 O3may bereduced to metallicyttrium . Afterthepowder mixtureof Y2 O3 and Mo2 Cwasheat treated at1873 K, Yttrium existsin two kinds of chemicalstate- yttrium of zero valence and yttrium ofthreevalences.
文摘The effect of rare earth element yttrium on the high temperature oxidation resistance of a directionally solidified Ni-base superalloy was studied with scanning electron microscopy(SEM), energy dispersive spectrum(EDS)and X-ray diffraction(XRD)techniques. The results show that the oxidation resistance of the alloy is substantially improved by adding proper amount of yttrium.