In this paper, we investigate the solutions of the hyperbolic Yamabe problem for the (1 + n)-dimensional Minkowski space-time. More precisely speaking, for the case of n = 1, we derive a general solution of the hyp...In this paper, we investigate the solutions of the hyperbolic Yamabe problem for the (1 + n)-dimensional Minkowski space-time. More precisely speaking, for the case of n = 1, we derive a general solution of the hyperbolic Yamabe problem; for the case of n =2, 3, we study the global existence and blowup phenomena of smooth solutions of the hyperbolic Yamabe problem; while for general multi-dimensional case n ≥ 2, we discuss the global existence and non-existence for a kind of exact solutions of the hyperbolic Yamabe problem.展开更多
We transform the Yamabe equation on a ball of arbitrary dimension greater than two into a nonlinear singularly boundary value problem on the unit interval[0;1].Then we apply Lie-group shooting method(LGSM)to search a ...We transform the Yamabe equation on a ball of arbitrary dimension greater than two into a nonlinear singularly boundary value problem on the unit interval[0;1].Then we apply Lie-group shooting method(LGSM)to search a missing initial condition of slope through a weighting factor r 2(0;1).The best r is determined by matching the right-end boundary condition.When the initial slope is available we can apply the group preserving scheme(GPS)to calculate the solution,which is highly accurate.By LGSM we obtain precise radial symmetric solutions of the Yamabe equation.These results are useful in demonstrating the utility of Lie-group based numerical approaches to solving nonlinear differential equations.展开更多
基金Supported by the NNSF of China(11271323,91330105)the Zhejiang Provincial Natural Science Foundation of China(LZ13A010002)
文摘In this paper, we investigate the solutions of the hyperbolic Yamabe problem for the (1 + n)-dimensional Minkowski space-time. More precisely speaking, for the case of n = 1, we derive a general solution of the hyperbolic Yamabe problem; for the case of n =2, 3, we study the global existence and blowup phenomena of smooth solutions of the hyperbolic Yamabe problem; while for general multi-dimensional case n ≥ 2, we discuss the global existence and non-existence for a kind of exact solutions of the hyperbolic Yamabe problem.
文摘We transform the Yamabe equation on a ball of arbitrary dimension greater than two into a nonlinear singularly boundary value problem on the unit interval[0;1].Then we apply Lie-group shooting method(LGSM)to search a missing initial condition of slope through a weighting factor r 2(0;1).The best r is determined by matching the right-end boundary condition.When the initial slope is available we can apply the group preserving scheme(GPS)to calculate the solution,which is highly accurate.By LGSM we obtain precise radial symmetric solutions of the Yamabe equation.These results are useful in demonstrating the utility of Lie-group based numerical approaches to solving nonlinear differential equations.