期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
Changing features of extreme precipitation in the Yangtze River basin during 1961-2002 被引量:9
1
作者 ZHANG Zengxin ZHANG Qiang JIANG Tong 《Journal of Geographical Sciences》 SCIE CSCD 2007年第1期33-42,共10页
The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavele... The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavelet transform method. The research results indicated that: 1) Spatial distribution of RID is similar in comparison with that of R3D, R5D and R7D. The Jialingjiang and Hanjiang river basins are dominated by decreasing trend, which is significant at 〉95% confidence level in Jialingjiang River basin and insignificant at 〉95% confidence level in Hanjiang River basin. The southern part of the Yangtze River basin and the western part of the upper Yangtze River basin are dominated by significant increasing trend of RID extreme precipitation at 〉95% confidence level. 2) As for the R3D, R5D and R7D, the western part of the upper Yangtze River basin is dominated by significant increasing trend at 〉95% confidence level. The eastern part of the upper Yangtze River basin is dominated by decreasing trend, but is insignificant at 〉95% confidence level. The middle and lower Yangtze River basin is dominated by increasing trend, but insignificant at 〉95% confidence level. 3) The frequency and intensity of extreme precipitation events are intensified over time. Precipitation anomalies indicated that the southeastern part, southern part and southwestern part of the Yangtze River basin are dominated by positive extreme precipitation anomalies between 1993-2002 and 1961-1992. The research results of this text indicate that the occurrence probability of flash flood is higher in the western part of the upper Yangtze River basin and the middle and lower Yangtze River basin, esp. in the southwestern and southeastern parts of the Yangtze River basin. 展开更多
关键词 extreme precipitation event linear trend continuous wavelet transform yangtze river basin
下载PDF
Predicting June Mean Rainfall in the Middle/Lower Yangtze River Basin 被引量:9
2
作者 Gill M.MARTIN Nick J.DUNSTONE +1 位作者 Adam A.SCAIFE Philip E.BETT 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第1期29-41,共13页
We demonstrate that there is significant skill in the GloSea5 operational seasonal forecasting system for predicting June mean rainfall in the middle/lower Yangtze River basin up to four months in advance.Much of the ... We demonstrate that there is significant skill in the GloSea5 operational seasonal forecasting system for predicting June mean rainfall in the middle/lower Yangtze River basin up to four months in advance.Much of the rainfall in this region during June is contributed by the mei-yu rain band.We find that similar skill exists for predicting the East Asian summer monsoon index(EASMI)on monthly time scales,and that the latter could be used as a proxy to predict the regional rainfall.However,there appears to be little to be gained from using the predicted EASMI as a proxy for regional rainfall on monthly time scales compared with predicting the rainfall directly.Although interannual variability of the June mean rainfall is affected by synoptic and intraseasonal variations,which may be inherently unpredictable on the seasonal forecasting time scale,the major influence of equatorial Pacific sea surface temperatures from the preceding winter on the June mean rainfall is captured by the model through their influence on the western North Pacific subtropical high.The ability to predict the June mean rainfall in the middle and lower Yangtze River basin at a lead time of up to 4 months suggests the potential for providing early information to contingency planners on the availability of water during the summer season. 展开更多
关键词 forecast skill EASMI monthly mean rainfall East Asian summer monsoon yangtze river basin
下载PDF
Sources of Subseasonal Prediction Skill for Heatwaves over the Yangtze River Basin Revealed from Three S2S Models 被引量:5
3
作者 Jiehong XIE Jinhua YU +1 位作者 Haishan CHEN Pang-Chi HSU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第12期1435-1450,共16页
Based on the reforecast data(1999–2010)of three operational models[the China Meteorological Administration(CMA),the National Centers for Environmental Prediction of the U.S.(NCEP)and the European Centre for Medium-Ra... Based on the reforecast data(1999–2010)of three operational models[the China Meteorological Administration(CMA),the National Centers for Environmental Prediction of the U.S.(NCEP)and the European Centre for Medium-Range Weather Forecasts(ECMWF)]that participated in the Subseasonal to Seasonal Prediction(S2S)project,we identified the major sources of subseasonal prediction skill for heatwaves over the Yangtze River basin(YRB).The three models show limited prediction skills in terms of the fraction of correct predictions for heatwave days in summer;the Heidke Skill Score drops quickly after a 5-day forecast lead and falls down close to zero beyond the lead time of 15 days.The superior skill of the ECMWF model in predicting the intensity and duration of the YRB heatwave is attributable to its fidelity in capturing the phase evolution and amplitude of high-pressure anomalies associated with the intraseasonal oscillation and the dryness of soil moisture induced by less precipitation via the land–atmosphere coupling.The effects of 10–30-day and 30–90-day circulation prediction skills on heatwave predictions are comparable at shorter forecast leads(10 days),while the biases in 30–90-day circulation amplitude prediction show close connection with the degradation of heatwave prediction skill at longer forecast leads(>15–20 days).The biases of intraseasonal circulation anomalies further affect precipitation anomalies and thus land conditions,causing difficulty in capturing extremely hot days and their persistence in the S2S models. 展开更多
关键词 subseasonal prediction HEATWAVE yangtze river basin subseasonal-to-seasonal models
下载PDF
The Upstream "Strong Signals" of the Water Vapor Transport over the Tibetan Plateau during a Heavy Rainfall Event in the Yangtze River Basin 被引量:4
4
作者 Yang ZHAO Xiangde XU +1 位作者 Bin CHEN Yinjun Wang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第12期1343-1350,共8页
A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream... A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream "strong signals" of the water vapor transport in the Tibetan Plateau (TP). The studied time period covers from 2000 LST 5 July to 2000 LST 15 July (temporal resolution: 6 hours). By analyzing the three-dimensional structure of the water vapor flux, vorticity and divergence prior to and during the heavy rainfall event, the upstream "strong signals" related to this heavy rainfall event are revealed. A strong correlation exists between the heavy rainfall event in the YRB and the convective clouds over the TE The "convergence zone" of the water vapor transport is also identified, based on correlation analysis of the water vapor flux two days and one day prior to, and on the day of, the heavy rainfall. And this "convergence zone" coincides with the migration of the maximum rainfall over the YRB. This specific coupled structure actually plays a key role in generating heavy rainfall over the YRB. The eastward movement of the coupled system with a divergence]convergence center of the potential function at the upper/lower level resembles the spatiotemporal evolution of the heavy rainfall event over the YRB. These upstream "strong signals" are clearly traced in this study through analyzing the three-dimensional structure of the potential/stream function of upstream water vapor transport. 展开更多
关键词 potential/stream function strong signals yangtze river basin heavy rainfall event
下载PDF
Capability of TMPA products to simulate streamflow in upper Yellow and Yangtze River basins on Tibetan Plateau 被引量:3
5
作者 Zhen-chun HAO Kai TONG +1 位作者 Xiao-li LIU Lei-lei ZHANG 《Water Science and Engineering》 EI CAS CSCD 2014年第3期237-249,共13页
Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite... Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite rainfall estimates have been very important sources for precipitation information, particularly in rain gauge-sparse regions. In this study, Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products 3B42, RTV5V6, and RTV7 were evaluated for their applicability to the upper Yellow and Yangtze River basins on the Tibetan Plateau. Moreover, the capability of the TMPA products to simulate streamflow was also investigated using the Variable Infiltration Capacity (VIC) semi-distributed hydrological model. Results show that 3B42 performs better than RTVSV6 and RTV7, based on verification of the China Meteorological Administration (CMA) observational precipitation data. RTVSV6 can roughly capture the spatial precipitation pattern but overestimation exists throughout the entire study region. The anticipated improvements of RTV7 relative to RTVSV6 have not been realized in this study. Our results suggest that RTV7 significantly overestimates the precipitation over the two river basins, though it can capture the seasonal cycle features of precipitation. 3B42 shows the best performance in streamflow simulation of the abovementioned satellite products. Although involved in gauge adjustment at a monthly scale, 3B42 is capable of daily streamflow simulation. RTV5V6 and RTV7 have no capability to simulate streamflow in the upper Yellow and Yangtze River basins. 展开更多
关键词 TMPA CMA precipitation data VIC hydrological model streamflow simulation upper Yellow and yangtze river basins
下载PDF
THE RELATIONSHIP BETWEEN THE ATMOSPHERIC HEATING SOURCE/SINK ANOMALIES OF ASIAN MONSOON AND FLOOD/DROUGHT IN THE YANGTZE RIVER BASIN IN THE MEIYU PERIOD 被引量:4
6
作者 岑思弦 巩远发 +1 位作者 赖欣 彭亮 《Journal of Tropical Meteorology》 SCIE 2015年第4期352-360,共9页
NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 1... NCEP/NCAR reanalysis data and a 30-year precipitation dataset of observed daily rainfall from 109 gauge stations are utilized in this paper.Using the REOF we analyzed the spatial distribution of precipitation in the 109 stations in the Yangtze River Basin in Meiyu periods from 1978 to 2007.The result showed that the spatial distribution of precipitation in the Yangtze River Basin can be divided into the south and north part.As a result,relationships between an atmospheric heating source(hereafter called <Q_1>) over the Asian region and the precipitation on the south and north side of Yangtze River in Meiyu periods were separately studied in this paper.The results are shown as follows.The flood/drought to the north of Yangtze River(NYR) was mainly related to the <Q_1> over the East Asia summer monsoon region:when the <Q_1> over the Philippines through Western Pacific and the south China was weakened(strengthened),it would probably result in the flood(drought) in NYR;and the precipitation on the south side of Yangtze River(SYR)was related to the <Q_1> over the east Asia and Indian summer monsoon region:when the <Q_1> over the areas from south China to the northern East China Sea and Yellow Sea and south-eastern Japan was strengthened(weakened),and the <Q_1> over the areas from the Bay of Bengal to south-eastern Tibetan Plateau was weakened(strengthened),it will lead to flood(drought) in SYR. 展开更多
关键词 atmospheric heating source (〈Q1〉) Meiyu period yangtze river basin flood/drought
下载PDF
Impact of climatic factors on vegetation dynamics in the upper Yangtze River basin in China 被引量:3
7
作者 ZHANG Yu-xin WANG Yu-kuan +3 位作者 FU Bin DIXIT Amod Mani CHAUDHARY Suresh WANG Shan 《Journal of Mountain Science》 SCIE CSCD 2020年第5期1235-1250,共16页
It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in t... It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in the pristine conditions of 58 woodland National Nature Reserves(NNRs)located in the upper Yangtze River basin(UYRB)in China which are little influenced by human activities.Changes in the normalized difference vegetation index(NDVI),precipitation,and temperature in the selected NNRs were observed and analyzed for the period between 1999 and 2015.The relationship between time-lag effect of climate and changes in the NDVI were assessed using Pearson correlations.The results showed three major trends.1)The NDVI increased during the study period;this indicates an increase in the amount of green vegetation,especially due to the warmer climate during the growing season.The NDVIs in March and September were significantly affected by the temperature of the previous months.Spring temperatures increased significantly(P<0.05)and there was a delay between climatic factors and their effect on vegetation,which depended on the previous season.In particular,the spring temperature had a delayed effect on the NDVI in summer.2)The way in which vegetation responds to climatic factors varied significantly across the seasons.Temperature had a greater effect on the NDVI in spring and summer and the effect was greater at higher altitudes.A similar trend was observed for precipitation,except for altitudes of 1000–2000 m.3)Temperature had a greater effect on the NDVI in spring and autumn at higher altitudes.The same trend was observed for precipitation in summer.These findings suggest that the vegetation found in NNRs in the upper reaches of the Yangtze River was in good condition between 1999 and 2015 and that the growth and development of vegetation in the region has not been adversely affected by climate change.This demonstrates the effectiveness of nature reserves in protecting regional ecology and minimizing anthropogenic effects. 展开更多
关键词 National Nature Reserves Upper yangtze river basin Normalized difference vegetation index Climate change Correlation analysis
下载PDF
Intraseasonal variability of summer monsoon rainfall over the lower reaches of the Yangtze River basin 被引量:3
8
作者 OUYANG Yu LIU Fei 《Atmospheric and Oceanic Science Letters》 CSCD 2020年第4期323-329,共7页
This work investigates the boreal-summer intraseasonal variability(ISV)of the precipitation over the lower reaches of the Yangtze River basin(LYRB)during 1979–2016,based on daily Climate Prediction Center global prec... This work investigates the boreal-summer intraseasonal variability(ISV)of the precipitation over the lower reaches of the Yangtze River basin(LYRB)during 1979–2016,based on daily Climate Prediction Center global precipitation data.The ISV of the summer monsoon rainfall over the LYRB is mainly dominated by the lower-frequency 12–20-day variability and the higher-frequency 8–12-day variability.The lower-frequency variability is found to be related to the northwestwardpropagating quasi-biweekly oscillation(QBWO)over the western North Pacific spanning the South China Sea(SCS)and Philippine Sea,while the higher-frequency variability is related to the southeastward propagating midlatitude wave train(MLWT).Moreover,not each active QBWO(MLWT)in the SCS(East Asia)can generate ISV components of the precipitation anomaly over the LYRB.The QBWO can change the rainfall significantly with the modulation of mean state precipitation,while the quasi-11-day mode mainly depends on the intensity of the MLWT rather than the mean precipitation change.These findings should enrich our understanding of the ISV of the East Asian summer monsoon and improve its predictability. 展开更多
关键词 yangtze river basin intraseasonal variability quasi-biweekly oscillation midlatitude wave train mean state change
下载PDF
Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data 被引量:3
9
作者 WeiLong Rao WenKe Sun 《Earth and Planetary Physics》 EI CSCD 2022年第3期228-240,共13页
Water budget closure is a method used to study the balance of basin water storage and the dynamics of relevant hydrological components(e.g.,precipitation,evapotranspiration,and runoff).When water budget closure is con... Water budget closure is a method used to study the balance of basin water storage and the dynamics of relevant hydrological components(e.g.,precipitation,evapotranspiration,and runoff).When water budget closure is connected with terrestrial water storage change(TWSC)estimated from Gravity Recovery and Climate Experiment(GRACE)data,variations in basin runoff can be understood comprehensively.In this study,total runoff variations in the Yangtze River Basin(YRB)and its sub-basins are examined in detail based on the water budget closure equation.We compare and combine mainstream precipitation and evapotranspiration models to determine the best estimate of precipitation minus evapotranspiration.In addition,we consider human water consumption,which has been neglected in earlier studies,and discuss its impact.To evaluate the effectiveness and accuracy of the combined hydrological models in estimating subsurface runoff,we collect discharge variations derived from in situ observations in the YRB and its sub-basins and compare these data with the models’final estimated runoff variations.The estimated runoff variations suggest that runoff over the YRB has been increasing,especially in the lower sub-basins and in the post-monsoon season,and is accompanied by apparent terrestrial water loss. 展开更多
关键词 RUNOFF DISCHARGE yangtze river basin water budget closure GRACE
下载PDF
Water vapor transport over China and its relationship with drought and flood in Yangtze River Basin 被引量:2
10
作者 蒋兴文 李跃清 王鑫 《Journal of Geographical Sciences》 SCIE CSCD 2009年第2期153-163,共11页
The characteristics of water vapor transport(WVT) over China and its relationship with precipitation anomalies in the Yangtze River Basin(YRB) are analyzed by using the upper-air station data in China and ECMWF reanal... The characteristics of water vapor transport(WVT) over China and its relationship with precipitation anomalies in the Yangtze River Basin(YRB) are analyzed by using the upper-air station data in China and ECMWF reanalysis data in summer from 1981 to 2002.The results indicate that the first mode of the vertically integrated WVT is significant whose spatial distribution presents water vapor convergence or divergence in the YRB.When the Western Pacific Subtropical High(WPSH) is strong and shifts southward and westward, the Indian Monsoon Low Pressure(IMLP) is weak, and the northern part of China stands behind the middle and high latitude trough, a large amount of water vapor from the Bay of Bengal(BOB), the South China Sea(SCS) and the western Pacific forms a strong and steady southwest WVT band and meets the strong cold water vapor from northern China in the YRB, thus it is likely to cause flood in the YRB.When WPSH is weak and shifts northward and eastward, IMLP is strong, and there is nearly straight west wind over the middle and high latitude, it is unfavorable for oceanic vapor extending to China and no steady and strong southwest WVT exists in the region south of the YRB.Meanwhile, the cold air from northern China is weak and can hardly be transported to the YRB.This brings on no obvious water vapor convergence, and then less precipitation in the YRB. 展开更多
关键词 water vapor transport drought and flood complex EOF yangtze river basin
下载PDF
The Linkage between Two Types of El Ni?o Events and Summer Streamflow over the Yellow and Yangtze River Basins 被引量:2
11
作者 Dan WANG Aihui WANG +1 位作者 Lianlian XU Xianghui KONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第2期160-172,共13页
It is generally agreed that El Nino can be classified into East Pacific(EP)and Central Pacific(CP)types.Nevertheless,little is known about the relationship between these two types of El Ni?o and land surface climate e... It is generally agreed that El Nino can be classified into East Pacific(EP)and Central Pacific(CP)types.Nevertheless,little is known about the relationship between these two types of El Ni?o and land surface climate elements.This study investigates the linkage between EP/CP El Ni?o and summer streamflow over the Yellow and Yangtze River basins and their possible mechanisms.Over the Yellow River basin,the anomalous streamflow always manifests as positive(negative)in EP(CP)years,with a correlation coefficient of 0.39(-0.37);while over the Yangtze River basin,the anomalous streamflow shows as positive in both EP and CP years,with correlation coefficients of 0.72 and 0.48,respectively.Analyses of the surface hydrological cycle indicate that the streamflow is more influenced by local evapotranspiration(ET)than precipitation over the Yellow River basin,while it is dominantly affected by precipitation over the Yangtze River basin.The different features over these two river basins can be explained by the anomalous atmospheric circulation,which is cyclonic(anticyclonic)north(south)of 30°N over East Asia.EP years are dominated by two anticyclones,which bring strong water vapor convergence and induce more precipitation but less ET,and subsequently increase streamflow and flooding risks.In CP years,especially over the Yellow River basin,two cyclones dominate and lead to water vapor divergence and reduce moisture arriving.Meanwhile,the ET enhances mainly due to local high surface air temperature,which further evaporates water from the soil.As a result,the streamflow decreases,which will then increase the drought risk. 展开更多
关键词 summer streamflow EP El Nino CP El Nino Yellow river basin yangtze river basin
下载PDF
Carbon sequestration in biomass and soil following reforestation:a case study of the Yangtze River Basin 被引量:1
12
作者 Jianyu Wang Claudio O.Delang +3 位作者 Guolong Hou Lei Gao Xiankun Yang Xixi Lu 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第5期1663-1690,共28页
The effect of reforestation on carbon sequestration has been extensively studied but there is less understanding of the changes that stand age and vegetation types have on changes in biomass carbon and soil organic ca... The effect of reforestation on carbon sequestration has been extensively studied but there is less understanding of the changes that stand age and vegetation types have on changes in biomass carbon and soil organic carbon(SOC)after reforestation.In this study,150 reforested plots were sampled across six provinces and one municipality in the Yangtze River Basin(YRB)during 2017 and 2018 to estimate carbon storage in biomass and soil.The results illustrate that site-averaged SOC was greater than site-averaged biomass carbon.There was more carbon sequestered in the biomass than in the soil.Biomass carbon accumulated rapidly in the initial 20 years after planting.In contrast,SOC sequestration increased rapidly after 20 years.In addition,evergreen species had higher carbon density in both biomass and soil than deciduous species and economic species(fruit trees).Carbon sequestration in evergreen and deciduous species is greater than in economic species.Our findings provide new evidence on the divergent responses of biomass and soil to carbon sequestration after reforestation with respect to stand ages and vegetation types.This study provides relevant information for ecosystem management as well as for carbon sequestration and global climate change policies. 展开更多
关键词 Biomass carbon Soil organic carbon Stand age Vegetation type yangtze river basin(YRB)
下载PDF
Decadal Change in the Influence of the Western North Pacific Subtropical High on Summer Rainfall over the Yangtze River Basin in the Late 1970s 被引量:1
13
作者 Xinyu LI Riyu LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1823-1834,共12页
It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This... It is well known that on the interannual timescale,the westward extension of the western North Pacific subtropical high(WNPSH)results in enhanced rainfall over the Yangtze River basin(YRB)in summer,and vice versa.This study identifies that this correspondence experiences a decadal change in the late 1970s.That is,the WNPSH significantly affects YRB precipitation(YRBP)after the late 1970s(P2)but not before the late 1970s(P1).It is found that enhanced interannual variability of the WNPSH favors its effect on YRB rainfall in P2.On the other hand,after removing the strong WNPSH cases in P2 and making the WNPSH variability equivalent to that in P1,the WNPSH can still significantly affect YRB rainfall,suggesting that the WNPSH variability is not the only factor that affects the WNPSH-YRBP relationship.Further results indicate that the change in basic state of thermal conditions in the tropical WNP provides a favorable background for the enhanced WNPSH-YRBP relationship.In P2,the lower-tropospheric atmosphere in the tropical WNP gets warmer and wetter,and thus the meridional gradient of climatological equivalent potential temperature over the YRB is enhanced.As a result,the WNPSH-related circulation anomalies can more effectively induce YRB rainfall anomalies through affecting the meridional gradient of equivalent potential temperature over the YRB. 展开更多
关键词 yangtze river basin western North Pacific subtropical high RAINFALL interannual relationship decadal change
下载PDF
How Frequently Will the Persistent Heavy Rainfall over the Middle and Lower Yangtze River Basin in Summer 2020 Happen under Global Warming? 被引量:1
14
作者 Zi-An GE Lin CHEN +1 位作者 Tim LI Lu WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第10期1673-1692,I0016,I0017,共22页
The middle and lower Yangtze River basin(MLYRB)suffered persistent heavy rainfall in summer 2020,with nearly continuous rainfall for about six consecutive weeks.How the likelihood of persistent heavy rainfall resembli... The middle and lower Yangtze River basin(MLYRB)suffered persistent heavy rainfall in summer 2020,with nearly continuous rainfall for about six consecutive weeks.How the likelihood of persistent heavy rainfall resembling that which occurred over the MLYRB in summer 2020(hereafter 2020PHR-like event)would change under global warming is investigated.An index that reflects maximum accumulated precipitation during a consecutive five-week period in summer(Rx35day)is introduced.This accumulated precipitation index in summer 2020 is 60%stronger than the climatology,and a statistical analysis further shows that the 2020 event is a 1-in-70-year event.The model projection results derived from the 50-member ensemble of CanESM2 and the multimodel ensemble(MME)of the CMIP5 and CMIP6 models show that the occurrence probability of the 2020PHR-like event will dramatically increase under global warming.Based on the Kolmogorov-Smirnoff test,one-third of the CMIP5 and CMIP6 models that have reasonable performance in reproducing the 2020PHR-like event in their historical simulations are selected for the future projection study.The CMIP5 and CMIP6 MME results show that the occurrence probability of the 2020PHR-like event under the present-day climate will be double under lower-emission scenarios(CMIP5 RCP4.5,CMIP6 SSP1-2.6,and SSP2-4.5)and 3-5 times greater under higher-emission scenarios(3.0 times for CMIP5 RCP8.5,2.9 times for CMIP6 SSP3-7.0,and 4.8 times for CMIP6 SSP5-8.5).The inter-model spread of the probability change is small,lending confidence to the projection results.The results provide a scientific reference for mitigation of and adaptation to future climate change. 展开更多
关键词 persistent heavy rainfall middle and lower yangtze river basin future projection CMIP5 and CMIP6 models generalized extreme value(GEV)distribution
下载PDF
Variations of Terrestrial Water Storage in the Yangtze River Basin under Climate Change Scenarios 被引量:1
15
作者 MA Qian XIE Zheng-Hui ZHAO Lin-Na 《Atmospheric and Oceanic Science Letters》 2010年第6期293-298,共6页
In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations ... In this study, the water balance-based Precipitation-Evapotranspiration-Runoff (PER) method combined with the land surface model Variable Infiltration Capacity (VIC) was used to estimate the spatiotemporal variations of terrestrial water storage (TWS) for two periods, 1982-2005 (baseline) and 2071-2100, under future climate scenarios A2 and B2 in the Yangtze River basin. The results show that the estimated TWS during the baseline period and under the two future climate scenarios have similar seasonal amplitudes of 60-70 mm. The higher values of TWS appear in June during the baseline period and under the B2 scenario, whereas the TWS under A2 shows two peaks in response to the related precipitation pattern. It also shows that the TWS is recharged from February to June during the baseline period, but it is replenished from March to June under the A2 and B2 scenarios. An analysis of the standard derivation of seasonal and interannual TWS time series under the three scenarios demonstrates that the seasonal TWS of the southeastern part of the Yangtze River basin varies remarkably and that the southeastern and central parts of the basin have higher variations in interannual TWS. With respect to the first mode of the Empirical Orthogonal Function (EOF), the inverse-phase change in seasonal TWS mainly appears across the Guizhou-Sichuan-Shaanxi belt, and the entire basin generally represents a synchronous change in interannual TWS. As a whole, the TWS under A2 presents a larger seasonal variation whereas that under B2 displays a greater interannual variation. These results imply that climate change could trigger severe disasters in the southeastern and central parts of the basin. 展开更多
关键词 terrestrial water storage the yangtze river basin climate change VARIATIONS
下载PDF
Research on the green-roof reconstruction strategy of existing buildings in the Yangtze River basin of China 被引量:1
16
作者 Tiejun Zhou Jianwu Xiong 《西部人居环境学刊》 2015年第A01期104-111,共8页
关键词 The yangtze river basin Green roof Existing building roof Reconstruction technology
下载PDF
Spatio-temporal variability of terrestrial water storage in the Yangtze River Basin: Response to climate changes
17
作者 Yaoguo Wang Zhaoyang Sun +2 位作者 Qiwen Wu Jun Fang Wei Jia 《Geodesy and Geodynamics》 EI CSCD 2023年第3期201-211,共11页
The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distributi... The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distribution of water resources is severely unbalanced.Therefore,the detailed analysis of spatio-temporal water mass changes is helpful to the development and rational utilization of water resources in the YRB.In this study,the variation of terrestrial water storage(TWS)is monitored by Gravity Recovery and Climate Experiment(GRACE)satellite gravity.We find that the University of Texas Center for Space Research(CSR)solution shows a notable difference with the Jet Propulsion Laboratory(JPL)in space,but the general trend is consistent in time series.Then the GRACE inferred water mass variation reveals that the YRB has experienced several drought and flood events over the past two decades.Global Land Data Assimilation System(GLDAS)results are similar to GRACE.Furthermore,the overall precipitation trend tends to be stable in space,but it is greatly influenced by the strong El Nino-~Southern Oscillation(ENSO),which is the response to global climate change.The upper YRB is less affected by ENSO and shows a more stable water storage signal with respect to the lower YRB. 展开更多
关键词 yangtze river basin Terrestrial water storage GRACE Time-varying gravity field
下载PDF
A holistic approach to creating a new yangtze river basin protection legislation
18
作者 Zhongmei Lv Mingqing You 《Chinese Journal of Population,Resources and Environment》 2020年第3期196-200,共5页
The protection of the Yangtze River Basin is a top priority in China,and the National People's Congress(NPC)Standing Committee has started to draft a new protection legislation specifically for the Yangtze River B... The protection of the Yangtze River Basin is a top priority in China,and the National People's Congress(NPC)Standing Committee has started to draft a new protection legislation specifically for the Yangtze River Basin.The Basin forms the epicenter of environmental,social,and economic life.Any efforts to protect the Basin must accommodate several competing interests from a multiplicity of interested parties and stakeholders such as local governments,villages,and business enterprises.Current relevant institutions and organizations are unable to sufficiently ensure environmental protection and green development in the Basin.The NPC Standing Committee must thus adopt a more holistic approach when creating new protection legislations aimed at the Yangtze River Basin. 展开更多
关键词 yangtze river basin Holistic approach basin-level legislation Environmental protection Water resource basin management Green development
下载PDF
Hydrological assessment of TRMM rainfall data over Yangtze River Basin
19
作者 Huang-he GU Zhong-bo YU +3 位作者 Chuan-guo YANG Qin JU Bao-hong LU Chuan LIANG 《Water Science and Engineering》 EI CAS 2010年第4期418-430,共13页
High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale... High-quality rainfall information is critical for accurate simulation of runoff and water cycle processes on the land surface. In situ monitoring of rainfall has a very limited utility at the regional and global scale because of the high temporal and spatial variability of rainfall. As a step toward overcoming this problem, microwave remote sensing observations can be used to retrieve the temporal and spatial rainfall coverage because of their global availability and frequency of measurement. This paper addresses the question of whether remote sensing rainfall estimates over a catchment can be used for water balance computations in the distributed hydrological model. The TRMM 3B42V6 rainfall product was introduced into the hydrological cycle simulation of the Yangtze River Basin in South China. A tool was developed to interpolate the rain gauge observations at the same temporal and spatial resolution as the TRMM data and then evaluate the precision of TRMM 3B42V6 data from 1998 to 2006. It shows that the TRMM 3B42V6 rainfall product was reliable and had good precision in application to the Yangtze River Basin. The TRMM 3B42V6 data slightly overestimated rainfall during the wet season and underestimated rainfall during the dry season in the Yangtze River Basin. Results suggest that the TRMM 3B42V6 rainfall product can be used as an alternative data source for large-scale distributed hydrological models. 展开更多
关键词 Tropical Rainfall Measuring Mission (TRMM) satellite rainfall product hydrological simulation distributed hydrological model yangtze river basin
下载PDF
Three Gorges Project:a project for ecological improvement and environmental protection in Yangtze River Basin
20
作者 Lu Youmei 《Engineering Sciences》 EI 2011年第3期9-14,30,共7页
Seeking water and earning their livelihoods is the natural selection of human beings.Like other rivers on the earth,the Yangtze River is the birthplace of human civilization and survival.As an ecosystem,the Yangtze Ri... Seeking water and earning their livelihoods is the natural selection of human beings.Like other rivers on the earth,the Yangtze River is the birthplace of human civilization and survival.As an ecosystem,the Yangtze River Basin is evolving under the influences of natural factors and human activities.Because of soil erosion,pollution and human activities,the imbalance of secondary environment is exacerbated and the ecological environment has become more vulnerable,so it is urgent to mitigate and prevent the ecological crisis.The practice has proved that implementation of engineering measures is an effective way to improve the ecological environment.The Three Gorges Project (TGP) has a flood control storage capacity of 22.15 billion m 3,effectively storing the flood water upstream of Yichang,and protects 15 million people and 1.5 million hm 2 farmland.Furthermore,the project can prevent or slow down the sedimentation and shrinkage of the lakes in the middle Yangtze River such as Dongting Lake;with an average annual power generation of about 90 billion kW· h,it can significantly reduce the emissions of harmful gas like CO 2.In general,the construction of TGP is conducive to the ecological and environmental protection in the Yangtze River Basin and China,even the world. 展开更多
关键词 yangtze river basin natural ecology ecological environment environmental protection
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部