Arguments persist on the genesis and ages for the banded-augen (rapakivi) anatectic granitoids (charnockite) extensively outcropped in the Yunkai (云开) region, western Guangdong (广东) Province. Their petroch...Arguments persist on the genesis and ages for the banded-augen (rapakivi) anatectic granitoids (charnockite) extensively outcropped in the Yunkai (云开) region, western Guangdong (广东) Province. Their petrochemistry, SHRIMP dating, deformational and metamorphic structure were studled. The results show that most granitoids are A/CNK〉1. 1, CaO/Na2O= 0. 62-1. 61 (average 0.94〉0.3), Al2O3/TiO2 =16.6-60.6 (average 23.68), depleted high field strong elements Ta, Nb, Zr, strong peraluminous high-K calcalkaline and calcalkaline granitoids in the post-collisional tectonic environment of a subduction-collision orogenic belt in an active-continental margin. The temperatures of charnockite and gneissic garnet-bearing biotite monzonitic granite are obviously higher than those of banded-augen (rapakivi) biotite monzonitic granite, and charnockite and gneissic garnet-bearing biotite monzonitic granite with the evolutional characteristics of A-type granites. The forming ages from banded-augen (rapakivi) biotite monzonitic granite to charnockite and gneissic garnet-bearing biotite monzonitic granite, whose crystallizing zircon SHRIMP ages are (465±10) Ma, (467±10 ) Ma, (435±11 ) Ma and (413±8) Ma, respectively, become younger. This shows that there was an oceaniccontinental subduction-collision and post-collisional extension-delamination-underplating between the Yangtze and Cathaysia plates during the Caledonian, and the granitoids experienced compressional uplift and extensional exhumation during the lndosinian. This provides important evidence of subduction collision of the Yangtze plate to the Cathaysia plate during the Caledonian in South China.展开更多
The Yunkai low uplift with low exploration degree is close to the Baiyun sag,and has hydrocarbon exploration potential in the deepwater area of the Pearl River Mouth Basin.Based on seismic and drilling data,balanced p...The Yunkai low uplift with low exploration degree is close to the Baiyun sag,and has hydrocarbon exploration potential in the deepwater area of the Pearl River Mouth Basin.Based on seismic and drilling data,balanced profiles and growth strata,this paper mainly discusses geological structures and formation processes of the Yunkai low uplift,and also analyzes the characteristics of fault system and their influence on hydrocarbon migration and accumulation.The EWtrending basement faults divide the Yunkai low uplift into two parts,i.e.the southern sector and the northern sector.The northern sector is a relatively wide and gentle uplift,while the southern sector is composed of two secondary half-grabens with faulting in the south and overlapping in the north.The Yunkai low uplift experienced three major formation stages,including the rapid uplifting stage during the deposition period of the Eocene Wenchang Formation,the slow uplifting stage during the deposition period of the Late Eocene-Middle Miocene Enping-Hanjiang formations,and the whole burial stage from the Middle Miocene to present.The extensional faults in the Yunkai low uplift and its adjacent areas strike mainly along the NW,NWW and near-EW directions.Also,the strikes of faults present a clockwise rotation from the deep to the shallow strata.According to effects of faults on hydrocarbon accumulation the faults in the Yunkai low uplift and its adjacent areas can be divided into trap-controlled faults and source-controlled faults.The trap-controlled faults control trap development and can effectively seal oil and gas.The source-controlled faults connect directly source rocks and reservoirs,which are highly active during the rifting stage and weakly active since the Miocene.This activity features of the source-controlled faults is beneficial to migration of the early crude oil from the Baiyun sag to the high part of the Yunkai low uplift,but is not good for migration of the late natural gas.In the Yunkai low uplift and its adjacent areas,the traps in the deep Zhuhai and Enping formations that are close to source rocks in the Baiyun sag should be the favorable exploration objectives.展开更多
The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag)deposit is located...The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag)deposit is located in the western part of Yunkai Area, with an abundance of Pubei batholiths. Zircon U–Pb geochronology of Pubei batholiths shows that crystallization age ranges from 251.9 ± 2.2 to 244.3 ± 1.8 Ma, thus belonging to Indosinian orogeny. Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust. In addition, strontium isotope of sphalerite from the Xinhua Pb–Zn–(Ag) deposit, has limited ranges in ^(87)Rb/^(86)Sr and ^(87)Sr/^(86)Sr, ranging from 0.4077 to 1.0449, and 0.718720 to 0.725245, respectively. The initial ^(87)Sr/^(86)Sr ratios of sphalerite ranges between 0.718720 and 0.725245, which is higher than that of upper continental crust and lower than that of the Pubei batholiths, illustrating the fluid might be derived from the mixing of Pubei pluton and upper continental crust.展开更多
The samples of ductile-rheologic deformational augen granite from the Yunkai uplift area, western Guangdong province, were determined by the whole-rock Sm-Nd, Pb-Pb and Rb-Sr isotopic dating to have an Sm-Nd isochron ...The samples of ductile-rheologic deformational augen granite from the Yunkai uplift area, western Guangdong province, were determined by the whole-rock Sm-Nd, Pb-Pb and Rb-Sr isotopic dating to have an Sm-Nd isochron age of 1414±68 Ma, a Pb-Pb isochron age of 1388±90 Ma and a Rb-Sr isochron age of 490±36 Ma. The first two ages are interpreted as the formation age of this suite of granite and the last age represents the timing of the tectono-thermal event of Caledonian ductile-rheologic shear partial melting. It is indicated that in the study area not only an orogeny took place in the Caledonian, but also a more important tectono-magmatic activity occurred in the Meso-proterozoic there, which may be related to the subduction-collision between the Yangtze block and Cathaysia block.展开更多
The regional migmatites in the Yunkai Block were formed under low\|pressure metamorphism. The majority of their protolith are biotite\|rich peraluminous gneisses. Detailed field observations, and studies of petrology,...The regional migmatites in the Yunkai Block were formed under low\|pressure metamorphism. The majority of their protolith are biotite\|rich peraluminous gneisses. Detailed field observations, and studies of petrology, spatial distribution of minerals and geochemistry suggest that the leucosomes were derived from anatexis. The single grain zircon U\|Pb dating data indicate that a pulse of migmatization occurred at 394~449 Ma and may have resulted from the large\|scale Caledonian magmatism in the Yunkai Block.展开更多
There are a wide range of magmatism and mineralization in the Yunkai area of South China during the Late Yanshanian Period, including the newly discovered Michang, Youmapo, Sanchaehong and Songwang porphyry-skarn W-Mo...There are a wide range of magmatism and mineralization in the Yunkai area of South China during the Late Yanshanian Period, including the newly discovered Michang, Youmapo, Sanchaehong and Songwang porphyry-skarn W-Mo deposits. In this study, we obtained zircon U-Pb ages of the ore-bearing biotite granites and their mafic enclaves from 884-1 to 1104-1 Ma. Zircons from the granites show Hf isotopic compositions with negative C-Hf(t) values of -5.9 to -0.6 and calculated Hf model ages (TvM2) of 1.5-1.2 Ga; indicating that the Middle Proterozoic crustal materials may have provided an important source for the magmatic rocks in this district during the Late Yanshanian Period, whereas zircons from the mafic enclaves show positive era(t) values of 1.3 to 10.1 with younger Hf model ages (TDM2) of 0.5-1.1 Ga, suggesting a mantle component may have involved in the granitic magma generation. Sulfur isotope study of the sulfide minerals from the W-Mo deposits show a narrow 834S distribution with most data ranging from -4.2%0 to 5.2‰. In addition, this study reports the first Fe isotopic compositions of pyrite in the W-Mo deposits, which show a uniform distribution range with the values near zero (656Fe=0.16‰-0.58‰, average 0.35‰; 657Fe=0.02‰-0.54‰, average 0.48‰). These data indicate that the ore-forming materials may come from the deep-sourced granitic magma, and the mineralizations show a close relationship with the granitic magmatism during the Late Yanshanian Period. Combining with previous results, we suggest that there is a widespread porphyry-skarn W-Mo mineralization in the Yunkai area during the Late Cretaceous (80-110 Ma), which has a close relationship with the Late Yanshanian magmatism that may have formed during the rollback of the subducted Pacific Plate.展开更多
The connexion zone between the Yunkai Uplift and Qinzhou Depression is one of the im-portant tectonic problems in South China. It includes (i) Bobai-Cenxi deep fracture, (ii)terrane margin and (iii) synsedimentary fau...The connexion zone between the Yunkai Uplift and Qinzhou Depression is one of the im-portant tectonic problems in South China. It includes (i) Bobai-Cenxi deep fracture, (ii)terrane margin and (iii) synsedimentary fault and is believed to be formed in the展开更多
基金This paper is supported by the National Natural Science Foundation ofChina ( No . 40072069 ) Chinese Geological Survey Project(200313000041) .
文摘Arguments persist on the genesis and ages for the banded-augen (rapakivi) anatectic granitoids (charnockite) extensively outcropped in the Yunkai (云开) region, western Guangdong (广东) Province. Their petrochemistry, SHRIMP dating, deformational and metamorphic structure were studled. The results show that most granitoids are A/CNK〉1. 1, CaO/Na2O= 0. 62-1. 61 (average 0.94〉0.3), Al2O3/TiO2 =16.6-60.6 (average 23.68), depleted high field strong elements Ta, Nb, Zr, strong peraluminous high-K calcalkaline and calcalkaline granitoids in the post-collisional tectonic environment of a subduction-collision orogenic belt in an active-continental margin. The temperatures of charnockite and gneissic garnet-bearing biotite monzonitic granite are obviously higher than those of banded-augen (rapakivi) biotite monzonitic granite, and charnockite and gneissic garnet-bearing biotite monzonitic granite with the evolutional characteristics of A-type granites. The forming ages from banded-augen (rapakivi) biotite monzonitic granite to charnockite and gneissic garnet-bearing biotite monzonitic granite, whose crystallizing zircon SHRIMP ages are (465±10) Ma, (467±10 ) Ma, (435±11 ) Ma and (413±8) Ma, respectively, become younger. This shows that there was an oceaniccontinental subduction-collision and post-collisional extension-delamination-underplating between the Yangtze and Cathaysia plates during the Caledonian, and the granitoids experienced compressional uplift and extensional exhumation during the lndosinian. This provides important evidence of subduction collision of the Yangtze plate to the Cathaysia plate during the Caledonian in South China.
基金funded by the National Science and Technology Major Project of China(2016ZX05026-007)the National Natural Science Foundation of China(42072149)。
文摘The Yunkai low uplift with low exploration degree is close to the Baiyun sag,and has hydrocarbon exploration potential in the deepwater area of the Pearl River Mouth Basin.Based on seismic and drilling data,balanced profiles and growth strata,this paper mainly discusses geological structures and formation processes of the Yunkai low uplift,and also analyzes the characteristics of fault system and their influence on hydrocarbon migration and accumulation.The EWtrending basement faults divide the Yunkai low uplift into two parts,i.e.the southern sector and the northern sector.The northern sector is a relatively wide and gentle uplift,while the southern sector is composed of two secondary half-grabens with faulting in the south and overlapping in the north.The Yunkai low uplift experienced three major formation stages,including the rapid uplifting stage during the deposition period of the Eocene Wenchang Formation,the slow uplifting stage during the deposition period of the Late Eocene-Middle Miocene Enping-Hanjiang formations,and the whole burial stage from the Middle Miocene to present.The extensional faults in the Yunkai low uplift and its adjacent areas strike mainly along the NW,NWW and near-EW directions.Also,the strikes of faults present a clockwise rotation from the deep to the shallow strata.According to effects of faults on hydrocarbon accumulation the faults in the Yunkai low uplift and its adjacent areas can be divided into trap-controlled faults and source-controlled faults.The trap-controlled faults control trap development and can effectively seal oil and gas.The source-controlled faults connect directly source rocks and reservoirs,which are highly active during the rifting stage and weakly active since the Miocene.This activity features of the source-controlled faults is beneficial to migration of the early crude oil from the Baiyun sag to the high part of the Yunkai low uplift,but is not good for migration of the late natural gas.In the Yunkai low uplift and its adjacent areas,the traps in the deep Zhuhai and Enping formations that are close to source rocks in the Baiyun sag should be the favorable exploration objectives.
基金supported by grants by the National Natural Science Foundation of China (No.41272097)the China Geological Survey Project (No.12120114016601)+1 种基金the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan) (No.CUG120702)the Teaching Laboratory Foundation of China University of Geosciences (Wuhan) (No.SKJ2013085,SKJ2014010)
文摘The Yunkai Area is located at the southern South China Block and is part of the Qinzhou Bay-Hangzhou Bay Metallogenic Belt, which is a famous polymetallic mineralization belt. The Xinhua Pb–Zn–(Ag)deposit is located in the western part of Yunkai Area, with an abundance of Pubei batholiths. Zircon U–Pb geochronology of Pubei batholiths shows that crystallization age ranges from 251.9 ± 2.2 to 244.3 ± 1.8 Ma, thus belonging to Indosinian orogeny. Geochemistry and Sr isotopic compositions of the Pubei batholiths show that it is derived from the partial melting of large scale crustal melting during the stage of exhumation and uplifting of the lower-middle crust. In addition, strontium isotope of sphalerite from the Xinhua Pb–Zn–(Ag) deposit, has limited ranges in ^(87)Rb/^(86)Sr and ^(87)Sr/^(86)Sr, ranging from 0.4077 to 1.0449, and 0.718720 to 0.725245, respectively. The initial ^(87)Sr/^(86)Sr ratios of sphalerite ranges between 0.718720 and 0.725245, which is higher than that of upper continental crust and lower than that of the Pubei batholiths, illustrating the fluid might be derived from the mixing of Pubei pluton and upper continental crust.
基金This study was financially supported by the NationalNatural Science Foundation of China grant 49502036;the key project (95-02-007) of Science and Technology of the Ninth Five-Year Plan of the Ministry of Geology and Mineral Resources.
文摘The samples of ductile-rheologic deformational augen granite from the Yunkai uplift area, western Guangdong province, were determined by the whole-rock Sm-Nd, Pb-Pb and Rb-Sr isotopic dating to have an Sm-Nd isochron age of 1414±68 Ma, a Pb-Pb isochron age of 1388±90 Ma and a Rb-Sr isochron age of 490±36 Ma. The first two ages are interpreted as the formation age of this suite of granite and the last age represents the timing of the tectono-thermal event of Caledonian ductile-rheologic shear partial melting. It is indicated that in the study area not only an orogeny took place in the Caledonian, but also a more important tectono-magmatic activity occurred in the Meso-proterozoic there, which may be related to the subduction-collision between the Yangtze block and Cathaysia block.
文摘The regional migmatites in the Yunkai Block were formed under low\|pressure metamorphism. The majority of their protolith are biotite\|rich peraluminous gneisses. Detailed field observations, and studies of petrology, spatial distribution of minerals and geochemistry suggest that the leucosomes were derived from anatexis. The single grain zircon U\|Pb dating data indicate that a pulse of migmatization occurred at 394~449 Ma and may have resulted from the large\|scale Caledonian magmatism in the Yunkai Block.
基金supported by the Fundamental Research Funds for the Central Universities (No. CUG120702)
文摘There are a wide range of magmatism and mineralization in the Yunkai area of South China during the Late Yanshanian Period, including the newly discovered Michang, Youmapo, Sanchaehong and Songwang porphyry-skarn W-Mo deposits. In this study, we obtained zircon U-Pb ages of the ore-bearing biotite granites and their mafic enclaves from 884-1 to 1104-1 Ma. Zircons from the granites show Hf isotopic compositions with negative C-Hf(t) values of -5.9 to -0.6 and calculated Hf model ages (TvM2) of 1.5-1.2 Ga; indicating that the Middle Proterozoic crustal materials may have provided an important source for the magmatic rocks in this district during the Late Yanshanian Period, whereas zircons from the mafic enclaves show positive era(t) values of 1.3 to 10.1 with younger Hf model ages (TDM2) of 0.5-1.1 Ga, suggesting a mantle component may have involved in the granitic magma generation. Sulfur isotope study of the sulfide minerals from the W-Mo deposits show a narrow 834S distribution with most data ranging from -4.2%0 to 5.2‰. In addition, this study reports the first Fe isotopic compositions of pyrite in the W-Mo deposits, which show a uniform distribution range with the values near zero (656Fe=0.16‰-0.58‰, average 0.35‰; 657Fe=0.02‰-0.54‰, average 0.48‰). These data indicate that the ore-forming materials may come from the deep-sourced granitic magma, and the mineralizations show a close relationship with the granitic magmatism during the Late Yanshanian Period. Combining with previous results, we suggest that there is a widespread porphyry-skarn W-Mo mineralization in the Yunkai area during the Late Cretaceous (80-110 Ma), which has a close relationship with the Late Yanshanian magmatism that may have formed during the rollback of the subducted Pacific Plate.
文摘The connexion zone between the Yunkai Uplift and Qinzhou Depression is one of the im-portant tectonic problems in South China. It includes (i) Bobai-Cenxi deep fracture, (ii)terrane margin and (iii) synsedimentary fault and is believed to be formed in the