Using the completeness relation composed of the coherent state and of the eigenket of bosonic creation operator, we establish a one-to-one correspondence between the z-transform and the quantum-mechanical transform fr...Using the completeness relation composed of the coherent state and of the eigenket of bosonic creation operator, we establish a one-to-one correspondence between the z-transform and the quantum-mechanical transform from the representation by number states |n) to the representation by coherent states |(z)> (Bargmann representation).In this way, the quantum-mechanical version of the various properties of z-transform are obtained and the operators for embodying these properties in the Fock space are derived, which may find applications in quantum states engineering.展开更多
To discuss the relationship between stability and bullwhip effect in the supply chain system,a basic model in a production-inventory control system is developed using difference equations.Z-transform techniques are ap...To discuss the relationship between stability and bullwhip effect in the supply chain system,a basic model in a production-inventory control system is developed using difference equations.Z-transform techniques are applied to investigate the production ordering and inventory dynamics.For the two operational regimes of sufficient inventory coverage and insufficient inventory coverage,the scope of decision parameters which make the system stable or instable is investigated.Under two operational regimes and the actual system,production release rates,stability/instability and bullwhip effect in the stable region and instable region are examined based on different demand functions,and then the numerical simulation results are given.The results show that reasonable choices of fractional adjustment of inventory and supply line can make the system stable and decrease bullwhip effect.It is summarized that the piecewise linearization based on the stability analysis approach is a valid approximation to the analysis of production-inventory ordering systems with nonlinearities.Some interesting results are obtained and they have important implications for improving inventory and order decisions in supply chain systems.展开更多
文摘Using the completeness relation composed of the coherent state and of the eigenket of bosonic creation operator, we establish a one-to-one correspondence between the z-transform and the quantum-mechanical transform from the representation by number states |n) to the representation by coherent states |(z)> (Bargmann representation).In this way, the quantum-mechanical version of the various properties of z-transform are obtained and the operators for embodying these properties in the Fock space are derived, which may find applications in quantum states engineering.
文摘To discuss the relationship between stability and bullwhip effect in the supply chain system,a basic model in a production-inventory control system is developed using difference equations.Z-transform techniques are applied to investigate the production ordering and inventory dynamics.For the two operational regimes of sufficient inventory coverage and insufficient inventory coverage,the scope of decision parameters which make the system stable or instable is investigated.Under two operational regimes and the actual system,production release rates,stability/instability and bullwhip effect in the stable region and instable region are examined based on different demand functions,and then the numerical simulation results are given.The results show that reasonable choices of fractional adjustment of inventory and supply line can make the system stable and decrease bullwhip effect.It is summarized that the piecewise linearization based on the stability analysis approach is a valid approximation to the analysis of production-inventory ordering systems with nonlinearities.Some interesting results are obtained and they have important implications for improving inventory and order decisions in supply chain systems.