This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in...This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize.展开更多
DNA methylation is an important epigenetic regulatory mechanism,it regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s)to DNA.In this stu...DNA methylation is an important epigenetic regulatory mechanism,it regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s)to DNA.In this study,a novel methyltransferase 2a gene(Zmet2a)was cloned in maize and identified by polymerase chain reaction-base(PCR-base)using a bioinformatics strategy.The Zmet2a cDNA sequence is 2739 bp long and translates to 912 amino acid peptides.The Zmet2a protein revealed that it contains BAH and CHROMO structural domains,is a non-transmembrane protein that is hydrophilically unstable,and has no signal peptide structure.Meanwhile,we verified the biological roles of Zmet2a using transgenic Arabidopsis overexpressing Zmet2a and Zmet2a-knockout maize.Transgenic Zmet2a Arabidopsis thaliana showed highly significant advancement inflowering time,and Zmet2a-knockout maize showed advancement inflowering time,with significant changes in several traits.Altogether,these report the role of Zmet2a in the regulation offlowering time,which will lay a foundation for revealing the biological function and epigenetic regulation mechanism of Zmet2a in the growth,development andflowering of maize.展开更多
Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To inv...Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To investigate the function of cryptochrome 1(CRY1) in maize,where it is encoded by Zm CRY1,we obtained two Zm CRY1a genes(Zm CRY1a1 and Zm CRY1a2),both of which share the highest similarity with other gramineous plants,in particular rice CRY1a by phylogenetic analysis.In Arabidopsis,overexpression of Zm CRY1a genes promoted seedling de-etiolation under blue and white light,resulting in dwarfing of mature plants.In seedlings of the maize inbred line Zong 31(Zm CRY1aOE),overexpression of Zm CRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation.In mature transgenic maize plants,plant height,ear height,and internode length decreased in response to overexpression of Zm CRY1a genes.Expression of Zm CRY1a were insensitive to low blue light(LBL)-induced shade avoidance syndrome(SAS) in Arabidopsis and maize.This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of Zm CRY1a genes to LBL treatment.We confirmed a link between Zm CRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS.These results reveal that Zm CRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars.展开更多
Maize is susceptible to a number of diseases that can infect all plant organs and serve as a constraint on cereal production. The reduction in cereal production caused by disease is estimated at an average of 9.4%. Co...Maize is susceptible to a number of diseases that can infect all plant organs and serve as a constraint on cereal production. The reduction in cereal production caused by disease is estimated at an average of 9.4%. Corn root rot contributes greatly to the reduction in grain production and quality. The main objective of this work was to review the research on root rot in maize to determine the susceptibility of genotypes to root rot and to quantify the inheritance of resistance to root rot in maize. The methodology used was a complete 8 × 8 diallel design planted during the year 1999/2000. Root discoloration, plant length, root volume, effective volume and yield were the evaluated parameters. To analyze the data and determine the combinatorial abilities, genetic correlations, heritability and correlated response, diallel analysis was used. Eight parental lines;P28, I137TN, MP706, E739, MO17, B37, B73, and B14 were planted. The lines were crossed into each other, all combinations according to the complete diallel model (Model 1). The F1 was harvested after maturation. For statistical analysis, the version of the Agrobase program (2016) was used. Results show that F1 hybrids showed significant differences in root rot discoloration, plant height, root volume, effective root volume and yield. The P28 line and the B73XE739 cross had, respectively, the highest general and specific combinations. Root discoloration had the highest genetic correlation (r<sub>A</sub> = 0.47) with plant length. Broad and narrow heritability for root rot discoloration were, respectively, h<sup>2</sup> = 0.81 and h<sub>2</sub><sub> </sub>= 0.51. Root rot discoloration showed the highest correlated response (C<sub>R</sub> = 0.14) on plant length.展开更多
Excessive use of mineral fertilizers in maize farming negatively affects farmers’ income and impacts long-term soil health. This study aims to appreciate the effectiveness of biostimulant based on native Glomeraceae ...Excessive use of mineral fertilizers in maize farming negatively affects farmers’ income and impacts long-term soil health. This study aims to appreciate the effectiveness of biostimulant based on native Glomeraceae arbuscular mycorrhizal fungi on the production and uptake of phosphorus, nitrogen and potassium of maize (Zea mays L.) plants in central Benin. The trials were set up in a farming environment with thirty-four producers. The experimental design was composed of three treatments installed at 34 producers. Three growth parameters were evaluated on 60 ème days after sowing. Grain yield, nutritional status of maize plants and mycorrhization parameters were determined at harvest. The results showed that the Glomeraceae + 50% NPK (NPK: azote-phosphore-potassium)_Urea treatment improved the height, the crown diameter and the leaf area by 17.85%, 21.79% and 28.32% compared to the absolute control and by 0.41%, 1.11% and 1.46% compared to the 100% NPK_Urea treatment, respectively. Similarly, grain yield improved by 45.87% with the use of Glomeraceae + 50% NPK_Urea compared to the absolute control and by 3.96% compared to the 100% NPK_Urea treatment. The Glomeraceae + 50% NPK_Urea significantly improved the phosphorus and potassium uptake of maize plants. With respect to nitrogen uptake, no statistical difference was observed between treatments. The mycorrhizae strains used improved root infection in the maize plants. We recorded 66% frequency and 40.5% intensity of mycorrhization. The biostimulant based on indigenous Glomeraceae combined with 50% NPK_Urea can be used as a strategy to restore soil health and improve maize productivity in Benin.展开更多
为了探讨玉米赤霉烯酮(ZEA)与脱氧雪腐镰刀菌烯醇(DON)联合作用对免疫系统毒性影响及其毒理机制,试验以T淋巴细胞株(CTLL-2)为材料,在利用CCK-8试验确定ZEA、DON对CTLL-2细胞联合染毒浓度的基础上,研究了ZEA与DON联合染毒对CTLL-2细胞...为了探讨玉米赤霉烯酮(ZEA)与脱氧雪腐镰刀菌烯醇(DON)联合作用对免疫系统毒性影响及其毒理机制,试验以T淋巴细胞株(CTLL-2)为材料,在利用CCK-8试验确定ZEA、DON对CTLL-2细胞联合染毒浓度的基础上,研究了ZEA与DON联合染毒对CTLL-2细胞凋亡及凋亡相关蛋白Bax、Bcl-2和Caspase-3等表达的影响,试验设对照组、ZEA染毒组(5μg/m L ZEA)、DON染毒组(0.5μg/m L DON)、ZEA+DON联合染毒组(5μg/m L ZEA+0.5μg/m L DON),染毒时间为48 h,用流式细胞术检测细胞的凋亡率,Western-blot检测Bax、Bcl-2和Caspase级联反应相关蛋白的表达情况。结果表明:与对照组相比,各染毒组CTLL-2细胞的凋亡率均极显著升高(P<0.01);各染毒组细胞凋亡相关蛋白Bax/Bcl-2比值和Cleaved Cspase-3、Cleaved Caspase-8、Cleaved Caspase-9等蛋白的表达量均较对照组显著升高(P<0.05或P<0.01);联合染毒组呈现协同效应。说明ZEA与DON联合染毒在诱导免疫细胞凋亡方面发挥协同效应,它们共同存在可以发挥更强的免疫抑制效应;ZEA与DON联合染毒诱导CTLL-2细胞发生凋亡的机制与Bax/Bcl-2上调的线粒体通路密切相关。展开更多
A series of new cognitions on the morphogenesis of maize ( Zea mays L.) embryo have been obtained with scanning electron microscopy and semi-thin section techniques. 1. The proembryo. The proembryo from zygotic cell d...A series of new cognitions on the morphogenesis of maize ( Zea mays L.) embryo have been obtained with scanning electron microscopy and semi-thin section techniques. 1. The proembryo. The proembryo from zygotic cell divisions may be divided into three parts: proper, hypoblast and suspensor. The suspensor is short and small, and only exists transiently. As to the hypoblast there is a growth belt, which promotes elongation of the hypoblast. Eventually the upper portion of the hypoblast contributes to the formation of the coleorhiza and the remainder dries up, sticking to the end of the coleorhiza. 2. The maize embryo possesses dorsiventrality and cotyledon dimorphism. During early proembryo stage, the dorsiventrality appears in the proper of the embryo. On the ventral side, the cells are small with dense cytoplasm and few vacuoles. On the dorsal side, the cells are larger with lower cytoplasmic density and have more vacuoles. During later proembryo stage, the proper develops into two parts: the ventrum and the dorsurn. The ventrum rises up from the center of the ventral side. The dorsurn is composed of the marginal area of the ventral side and the whole dorsal side of the proper. During young embryo development, the ventrum differentiates into the coleoptile, apical meristem, hypocotyl, radicle and the main part of the coleorhiza. What is more important, the emergence of coleoptile primordium and radicular initials occur at the axis of the proper, then the coleoptile primordium expands from its two ends toward left and right to form a ring, and the endogenous radicular initials expand in all directions to form a conical radicular tip. All these morphogenetic activities of the ventrum follow a bilateral symmetrical pattern. The dorsurn forms the scutellum. primordium. Then the scutellum primordium, expands rapidly toward the left, right, front and back, while thickening itself, so as to make all components originating from the ventrum become hidden in the longitudinal groove of the scutellum. Lastly, the left and right lateral scales emerge from the edges of the longitudinal groove and expand toward the central line of the axis. As a consequence, morphologically, the bilateral symmetry of the ventral side of the embryo is revealed entirely. Morphogenetically, the coleoptile primordium and apical meristem in maize are similar to the coleoptile (apical cotyledon) and apex formation of the nice embryo, so the coleoptile of the maize embryo can also be considered as an apical cotyledon. The scutellum is a lateral cotyledon. These dimorphic cotyledons of the maize embryo originate from the dorsiventrality of the proper. 3. The true morphological structure of the maize embryo is recognized and its developmental stages are established. A maize embryo is a hypocotyl, in which the apical part is the shoot apex (or plumule) with the coleoptile, the central part consists mainly of the hypocotyl with a lateral cotyledon (scutellum), and the basal part is the radicle with coleorhiza. The left and right lateral scales derived from the scutellum overlap at the ventral side, leaving only two little pores at both ends of the seam from which the coleoptile and coleorhiza can be seen. The four sequential stages of maize embryonic development are as follows: (1) proembryo, stage. This stage covers a period from zygotic cell division to the appearance of the dorsum and ventrum. (2) ventrum rapid differentiation stage. (3) scutellum rapid expansion stage. (4) lateral scale development stage (or embryonic envelope formation stage). 4. To obtain a median longitudinal section perpendicular to the ventral surface is crucial for recognizing the genuine morphological structure of the maize embryo.展开更多
With light and electron microscopy the substructural change and the ATPase activity of corn (Zea mays L.) root cap cells after short-term osmotic stress were studied. Some spoke-like fine strands originating from the ...With light and electron microscopy the substructural change and the ATPase activity of corn (Zea mays L.) root cap cells after short-term osmotic stress were studied. Some spoke-like fine strands originating from the departed periplasm and stretching towards cell wall could be observed even after plasmolysis. By observing the precipitation of ATPase activity product (lead phosphate) at plasma membrane and plasmodesmata, it was found that the fine strands were plasma membrane-lined channels surrounding the cytoplasm and that they still firmly connected to the plasmodesmata during plasmolysis. Compared with the control (unstressed), a sharp decrease of ATPase activity in the plasmodesmata of the stressed cells was observed. Inhibition of energy metabolism in these limited locales would affect the physiological activity, maybe including the regulation of permeability and the change of size exclusion limit (SEL) of plasmodesmata.展开更多
[ Objective] The study aimed to clone and identify Na^+/H^+ antiporter genes in maize, and provided the information for characterizing the function of such genes in abiotic stress tolerance of maize. Method The in ...[ Objective] The study aimed to clone and identify Na^+/H^+ antiporter genes in maize, and provided the information for characterizing the function of such genes in abiotic stress tolerance of maize. Method The in silico cloning, RT-PCR, and bioinformatics analysis were used in this study. Result By in sifico cloning, a plasma membrane Na^+/H^+ antiporter gene, named as ZmSOS1 (EMBL accession No. BN001309), was cloned from maize ( Zea mays L. ). ZmSOS1 has an open reading frame (ORF) of 3 411 bp which encoded a protein of 1 136 amino acids. By multiple sequence alignment analysis, it showed the predicated peptide of ZmSOS1 were 61% and 82% identities in amino acids to the plasma membrane Na^+/H^+ antiporter AtSOS1 and OsSOS1, respectively. The RT-PCR analysis revealed that ZmSOS1 could be significantly up-regulated by salt stress, which indicated ZmSOS1 might play a role in salt tolerance of maize. Conclusion ZmSOS1 is a putative plasma membrane Na^+/H^+ antiporter gene and may play a role in abiotic stress tolerance of maize.展开更多
A method for simultaneously analyzing altemariol(AOH), altemariol monomethyl ether (AME) and zearalenone(ZEA) by particle beam LC/MS was established, LC separation was accompiished with a solvent system of methanol an...A method for simultaneously analyzing altemariol(AOH), altemariol monomethyl ether (AME) and zearalenone(ZEA) by particle beam LC/MS was established, LC separation was accompiished with a solvent system of methanol and water (80:20 v/v). The followed particle beam LC/MS analysis gave searchable spectra of AOH. AME and ZEA. Application of this technique to analysis of an alternaria culture confirmed the presence of AOH and AME.展开更多
Wild relatives possess potential genetic diversity for maize (<i><span style="font-family:Verdana;">Zea mays</span></i><span style="font-family:Verdana;"> L.) improvem...Wild relatives possess potential genetic diversity for maize (<i><span style="font-family:Verdana;">Zea mays</span></i><span style="font-family:Verdana;"> L.) improvement. Characterization of maize-</span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;"> introgression lines (ILs) is of great value to diversify the genetic base and improve the maize germplasm. Four maize-</span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;"> IL generations, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> BC1, BC2, BC3, and RIL, were constructed under the elite inbred background of 48-2, elite inbred line that is widely used in maize breeding in Southwestern China, and were phenotyped in different years and genotyped with 56110 SNPs. The results indicated that 48-2 had higher phenotypic performances than all the characterized ILs on most of the agronomic traits. Compared with other ILs, BC2 individuals exhibited more similar performance to 48-2 on most traits and possessed the highest kernel ratio (66.5%). Population structure and principal component analysis indicated that BC3 individuals gathered closer to 48-2 and exhibited the lowest </span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;">-introgression frequency (0.50%), while BC2 (29.06%) and RIL (18.52%) showed higher introgression frequency. The high level of genetic diversity observed in the maize-</span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;"> ILs demonstrated that </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">mays</span></i><span style="font-family:Verdana;"> ssp. </span><i><span style="font-family:Verdana;">mexicana </span></i><span style="font-family:Verdana;">can serve as a potential source for the enrichment of maize germplasm.</span>展开更多
文摘This study evaluated the genetic and agronomic parameter estimates of maize under different nitrogen rates. The trial was established at the Njala Agricultural Research Centre experimental site during 2021 and 2022 in a split block design with three maize varieties (IWCD2, 2009EVDT, and DMR-ESR-Yellow) and seven nitrogen (0, 30, 60, 90, 120, 150 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup>) rates. Findings showed that cob diameter and anthesis silking time (ASI) had intermediate heritability, ASI had high genetic advance, ASI and grain yield had high genotypic coefficient of variation (GCV), while traits with high phenotypic coefficient of variation (PCV) were plant height, ASI, grain yield, number of kernel per cob, number of kernel rows, ear length, and ear height. The PCV values were higher than GCV, indicating the influence of the environment in the studied traits. Nitrogen rates and variety significantly (p < 0.05) influenced grain yield production. Mean grain yields and economic parameter estimates increased with increasing nitrogen rates, with the 30 and 180 kg∙N∙ha<sup>−</sup><sup>1</sup> plots exhibiting the lowest and highest grain yields of 1238 kg∙ha<sup>−</sup><sup>1</sup> and 2098 kg∙ha<sup>−</sup><sup>1</sup>, respectively. Variety and nitrogen effects on partial factor productivity (PFP<sub>N</sub>), agronomic efficiency (AEN), net returns (NR), value cost ratio (VCR) and marginal return (MR) indicated that these parameters were significantly affected (p < 0.05) by these factors. The highest PFP<sub>N</sub> (41.3 kg grain kg<sup>−</sup><sup>1</sup>∙N) and AEN (29.4 kg grain kg<sup>−</sup><sup>1</sup>∙N) were obtained in the 30 kg∙N∙ha<sup>−</sup><sup>1</sup> plots, while the highest VCR (2.8) and MR (SLL 1.8 SLL<sup>−</sup><sup>1</sup> spent on N) were obtained in the 180 kg∙N∙ha<sup>−</sup><sup>1</sup>. The significant influence of variety and nitrogen on traits suggests that increasing yields and maximizing profits require use of appropriate nitrogen fertilization and improved farming practices that could be exploited for increased productivity of maize.
基金supported by Jilin Province Science and Technology Development Program(20220202014NC)the National Natural Science Foundation of China(#31471565 and#31170259).
文摘DNA methylation is an important epigenetic regulatory mechanism,it regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factor(s)to DNA.In this study,a novel methyltransferase 2a gene(Zmet2a)was cloned in maize and identified by polymerase chain reaction-base(PCR-base)using a bioinformatics strategy.The Zmet2a cDNA sequence is 2739 bp long and translates to 912 amino acid peptides.The Zmet2a protein revealed that it contains BAH and CHROMO structural domains,is a non-transmembrane protein that is hydrophilically unstable,and has no signal peptide structure.Meanwhile,we verified the biological roles of Zmet2a using transgenic Arabidopsis overexpressing Zmet2a and Zmet2a-knockout maize.Transgenic Zmet2a Arabidopsis thaliana showed highly significant advancement inflowering time,and Zmet2a-knockout maize showed advancement inflowering time,with significant changes in several traits.Altogether,these report the role of Zmet2a in the regulation offlowering time,which will lay a foundation for revealing the biological function and epigenetic regulation mechanism of Zmet2a in the growth,development andflowering of maize.
基金supported by the National Natural Science Foundation of China (31871709)the Construction of Support System for National Agricultural Green Development Advance Region of Qushui County,Tibet,China (QYXTZX-LS2022-01)+1 种基金the Key Project of Beijing Natural Science Foundation (6151002)the Startup Grants of Henan Agricultural University (30501038,30500823)。
文摘Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To investigate the function of cryptochrome 1(CRY1) in maize,where it is encoded by Zm CRY1,we obtained two Zm CRY1a genes(Zm CRY1a1 and Zm CRY1a2),both of which share the highest similarity with other gramineous plants,in particular rice CRY1a by phylogenetic analysis.In Arabidopsis,overexpression of Zm CRY1a genes promoted seedling de-etiolation under blue and white light,resulting in dwarfing of mature plants.In seedlings of the maize inbred line Zong 31(Zm CRY1aOE),overexpression of Zm CRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation.In mature transgenic maize plants,plant height,ear height,and internode length decreased in response to overexpression of Zm CRY1a genes.Expression of Zm CRY1a were insensitive to low blue light(LBL)-induced shade avoidance syndrome(SAS) in Arabidopsis and maize.This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of Zm CRY1a genes to LBL treatment.We confirmed a link between Zm CRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS.These results reveal that Zm CRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars.
文摘Maize is susceptible to a number of diseases that can infect all plant organs and serve as a constraint on cereal production. The reduction in cereal production caused by disease is estimated at an average of 9.4%. Corn root rot contributes greatly to the reduction in grain production and quality. The main objective of this work was to review the research on root rot in maize to determine the susceptibility of genotypes to root rot and to quantify the inheritance of resistance to root rot in maize. The methodology used was a complete 8 × 8 diallel design planted during the year 1999/2000. Root discoloration, plant length, root volume, effective volume and yield were the evaluated parameters. To analyze the data and determine the combinatorial abilities, genetic correlations, heritability and correlated response, diallel analysis was used. Eight parental lines;P28, I137TN, MP706, E739, MO17, B37, B73, and B14 were planted. The lines were crossed into each other, all combinations according to the complete diallel model (Model 1). The F1 was harvested after maturation. For statistical analysis, the version of the Agrobase program (2016) was used. Results show that F1 hybrids showed significant differences in root rot discoloration, plant height, root volume, effective root volume and yield. The P28 line and the B73XE739 cross had, respectively, the highest general and specific combinations. Root discoloration had the highest genetic correlation (r<sub>A</sub> = 0.47) with plant length. Broad and narrow heritability for root rot discoloration were, respectively, h<sup>2</sup> = 0.81 and h<sub>2</sub><sub> </sub>= 0.51. Root rot discoloration showed the highest correlated response (C<sub>R</sub> = 0.14) on plant length.
文摘Excessive use of mineral fertilizers in maize farming negatively affects farmers’ income and impacts long-term soil health. This study aims to appreciate the effectiveness of biostimulant based on native Glomeraceae arbuscular mycorrhizal fungi on the production and uptake of phosphorus, nitrogen and potassium of maize (Zea mays L.) plants in central Benin. The trials were set up in a farming environment with thirty-four producers. The experimental design was composed of three treatments installed at 34 producers. Three growth parameters were evaluated on 60 ème days after sowing. Grain yield, nutritional status of maize plants and mycorrhization parameters were determined at harvest. The results showed that the Glomeraceae + 50% NPK (NPK: azote-phosphore-potassium)_Urea treatment improved the height, the crown diameter and the leaf area by 17.85%, 21.79% and 28.32% compared to the absolute control and by 0.41%, 1.11% and 1.46% compared to the 100% NPK_Urea treatment, respectively. Similarly, grain yield improved by 45.87% with the use of Glomeraceae + 50% NPK_Urea compared to the absolute control and by 3.96% compared to the 100% NPK_Urea treatment. The Glomeraceae + 50% NPK_Urea significantly improved the phosphorus and potassium uptake of maize plants. With respect to nitrogen uptake, no statistical difference was observed between treatments. The mycorrhizae strains used improved root infection in the maize plants. We recorded 66% frequency and 40.5% intensity of mycorrhization. The biostimulant based on indigenous Glomeraceae combined with 50% NPK_Urea can be used as a strategy to restore soil health and improve maize productivity in Benin.
文摘为了探讨玉米赤霉烯酮(ZEA)与脱氧雪腐镰刀菌烯醇(DON)联合作用对免疫系统毒性影响及其毒理机制,试验以T淋巴细胞株(CTLL-2)为材料,在利用CCK-8试验确定ZEA、DON对CTLL-2细胞联合染毒浓度的基础上,研究了ZEA与DON联合染毒对CTLL-2细胞凋亡及凋亡相关蛋白Bax、Bcl-2和Caspase-3等表达的影响,试验设对照组、ZEA染毒组(5μg/m L ZEA)、DON染毒组(0.5μg/m L DON)、ZEA+DON联合染毒组(5μg/m L ZEA+0.5μg/m L DON),染毒时间为48 h,用流式细胞术检测细胞的凋亡率,Western-blot检测Bax、Bcl-2和Caspase级联反应相关蛋白的表达情况。结果表明:与对照组相比,各染毒组CTLL-2细胞的凋亡率均极显著升高(P<0.01);各染毒组细胞凋亡相关蛋白Bax/Bcl-2比值和Cleaved Cspase-3、Cleaved Caspase-8、Cleaved Caspase-9等蛋白的表达量均较对照组显著升高(P<0.05或P<0.01);联合染毒组呈现协同效应。说明ZEA与DON联合染毒在诱导免疫细胞凋亡方面发挥协同效应,它们共同存在可以发挥更强的免疫抑制效应;ZEA与DON联合染毒诱导CTLL-2细胞发生凋亡的机制与Bax/Bcl-2上调的线粒体通路密切相关。
文摘A series of new cognitions on the morphogenesis of maize ( Zea mays L.) embryo have been obtained with scanning electron microscopy and semi-thin section techniques. 1. The proembryo. The proembryo from zygotic cell divisions may be divided into three parts: proper, hypoblast and suspensor. The suspensor is short and small, and only exists transiently. As to the hypoblast there is a growth belt, which promotes elongation of the hypoblast. Eventually the upper portion of the hypoblast contributes to the formation of the coleorhiza and the remainder dries up, sticking to the end of the coleorhiza. 2. The maize embryo possesses dorsiventrality and cotyledon dimorphism. During early proembryo stage, the dorsiventrality appears in the proper of the embryo. On the ventral side, the cells are small with dense cytoplasm and few vacuoles. On the dorsal side, the cells are larger with lower cytoplasmic density and have more vacuoles. During later proembryo stage, the proper develops into two parts: the ventrum and the dorsurn. The ventrum rises up from the center of the ventral side. The dorsurn is composed of the marginal area of the ventral side and the whole dorsal side of the proper. During young embryo development, the ventrum differentiates into the coleoptile, apical meristem, hypocotyl, radicle and the main part of the coleorhiza. What is more important, the emergence of coleoptile primordium and radicular initials occur at the axis of the proper, then the coleoptile primordium expands from its two ends toward left and right to form a ring, and the endogenous radicular initials expand in all directions to form a conical radicular tip. All these morphogenetic activities of the ventrum follow a bilateral symmetrical pattern. The dorsurn forms the scutellum. primordium. Then the scutellum primordium, expands rapidly toward the left, right, front and back, while thickening itself, so as to make all components originating from the ventrum become hidden in the longitudinal groove of the scutellum. Lastly, the left and right lateral scales emerge from the edges of the longitudinal groove and expand toward the central line of the axis. As a consequence, morphologically, the bilateral symmetry of the ventral side of the embryo is revealed entirely. Morphogenetically, the coleoptile primordium and apical meristem in maize are similar to the coleoptile (apical cotyledon) and apex formation of the nice embryo, so the coleoptile of the maize embryo can also be considered as an apical cotyledon. The scutellum is a lateral cotyledon. These dimorphic cotyledons of the maize embryo originate from the dorsiventrality of the proper. 3. The true morphological structure of the maize embryo is recognized and its developmental stages are established. A maize embryo is a hypocotyl, in which the apical part is the shoot apex (or plumule) with the coleoptile, the central part consists mainly of the hypocotyl with a lateral cotyledon (scutellum), and the basal part is the radicle with coleorhiza. The left and right lateral scales derived from the scutellum overlap at the ventral side, leaving only two little pores at both ends of the seam from which the coleoptile and coleorhiza can be seen. The four sequential stages of maize embryonic development are as follows: (1) proembryo, stage. This stage covers a period from zygotic cell division to the appearance of the dorsum and ventrum. (2) ventrum rapid differentiation stage. (3) scutellum rapid expansion stage. (4) lateral scale development stage (or embryonic envelope formation stage). 4. To obtain a median longitudinal section perpendicular to the ventral surface is crucial for recognizing the genuine morphological structure of the maize embryo.
基金Supported by the grants from the National Natural Science Foundation of China.
文摘With light and electron microscopy the substructural change and the ATPase activity of corn (Zea mays L.) root cap cells after short-term osmotic stress were studied. Some spoke-like fine strands originating from the departed periplasm and stretching towards cell wall could be observed even after plasmolysis. By observing the precipitation of ATPase activity product (lead phosphate) at plasma membrane and plasmodesmata, it was found that the fine strands were plasma membrane-lined channels surrounding the cytoplasm and that they still firmly connected to the plasmodesmata during plasmolysis. Compared with the control (unstressed), a sharp decrease of ATPase activity in the plasmodesmata of the stressed cells was observed. Inhibition of energy metabolism in these limited locales would affect the physiological activity, maybe including the regulation of permeability and the change of size exclusion limit (SEL) of plasmodesmata.
基金Supported by the Natural Science Foundation of the Department of Educationof Jiangsu Province(07KJD180168)the Doctoral ScienceStarting Foundation of Nantong UniversityAnd the Openning Subjectof Plant Functional Genomics Key Laboratory of Jiangsu Province~~
文摘[ Objective] The study aimed to clone and identify Na^+/H^+ antiporter genes in maize, and provided the information for characterizing the function of such genes in abiotic stress tolerance of maize. Method The in silico cloning, RT-PCR, and bioinformatics analysis were used in this study. Result By in sifico cloning, a plasma membrane Na^+/H^+ antiporter gene, named as ZmSOS1 (EMBL accession No. BN001309), was cloned from maize ( Zea mays L. ). ZmSOS1 has an open reading frame (ORF) of 3 411 bp which encoded a protein of 1 136 amino acids. By multiple sequence alignment analysis, it showed the predicated peptide of ZmSOS1 were 61% and 82% identities in amino acids to the plasma membrane Na^+/H^+ antiporter AtSOS1 and OsSOS1, respectively. The RT-PCR analysis revealed that ZmSOS1 could be significantly up-regulated by salt stress, which indicated ZmSOS1 might play a role in salt tolerance of maize. Conclusion ZmSOS1 is a putative plasma membrane Na^+/H^+ antiporter gene and may play a role in abiotic stress tolerance of maize.
文摘A method for simultaneously analyzing altemariol(AOH), altemariol monomethyl ether (AME) and zearalenone(ZEA) by particle beam LC/MS was established, LC separation was accompiished with a solvent system of methanol and water (80:20 v/v). The followed particle beam LC/MS analysis gave searchable spectra of AOH. AME and ZEA. Application of this technique to analysis of an alternaria culture confirmed the presence of AOH and AME.
文摘Wild relatives possess potential genetic diversity for maize (<i><span style="font-family:Verdana;">Zea mays</span></i><span style="font-family:Verdana;"> L.) improvement. Characterization of maize-</span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;"> introgression lines (ILs) is of great value to diversify the genetic base and improve the maize germplasm. Four maize-</span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;"> IL generations, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> BC1, BC2, BC3, and RIL, were constructed under the elite inbred background of 48-2, elite inbred line that is widely used in maize breeding in Southwestern China, and were phenotyped in different years and genotyped with 56110 SNPs. The results indicated that 48-2 had higher phenotypic performances than all the characterized ILs on most of the agronomic traits. Compared with other ILs, BC2 individuals exhibited more similar performance to 48-2 on most traits and possessed the highest kernel ratio (66.5%). Population structure and principal component analysis indicated that BC3 individuals gathered closer to 48-2 and exhibited the lowest </span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;">-introgression frequency (0.50%), while BC2 (29.06%) and RIL (18.52%) showed higher introgression frequency. The high level of genetic diversity observed in the maize-</span><i><span style="font-family:Verdana;">mexicana</span></i><span style="font-family:Verdana;"> ILs demonstrated that </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">. </span><i><span style="font-family:Verdana;">mays</span></i><span style="font-family:Verdana;"> ssp. </span><i><span style="font-family:Verdana;">mexicana </span></i><span style="font-family:Verdana;">can serve as a potential source for the enrichment of maize germplasm.</span>