Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis...Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis, PSIM simulation and circuit experiment. A special limitation of soft-switching techniques has been found in their AC/DC applications.展开更多
A novel 60 kW plasma converter with full range soft-switch by utilizing magnetizing inductance, leakage inductance and distributed inductance is introduced. The current injection phase-shifting technique is introduced...A novel 60 kW plasma converter with full range soft-switch by utilizing magnetizing inductance, leakage inductance and distributed inductance is introduced. The current injection phase-shifting technique is introduced into the research of soft-switching plasma converter successfully. The magnetic bias of transformer and the protection of switching parts are solved. The tests state that the power supply has excellent characteristics and higher efficiency and can meet the demand of large power plasma process well.展开更多
This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with v...This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with valley switching (CCMVS) is employed to realize soft switching so as to reduce turn-on loss of power switch as well as conducted electromagnetic interference (EMI). At light load, the converter operates in discontinuous conduction mode (DCM) with valley switching and adaptive off-time control (AOT) to limit the switching frequency range and maintain load regulation. At extremely light load or in standby mode, burst mode operation is adopted to provide low power consumption through reducing both switching frequency and static power dissipation of the controller. The multi-mode control is implemented by an oscillator whose pulse duration is adjusted by output feedback. An accurate valley switching control circuit guarantees the minimum turn-on voltage drop of power switch. The pro-totype of the controller IC was fabricated in a 1.5-μm BiCMOS process and applied to a 310 V/20 V, 90 W flyback DC/DC converter circuitry. Experimental results showed that all expected functions were realized successfully. The flyback converter achieved a high efficiency of over 80% from full load down to 2.5 W, with the maximum reaching 88.8%, while the total power consumption in standby mode was about 300 mW.展开更多
The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been c...The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.展开更多
This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive ...This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.展开更多
Renewable electricity options, such as fuel cells, solar photovoltaic,and batteries, are being integrated, which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dcco...Renewable electricity options, such as fuel cells, solar photovoltaic,and batteries, are being integrated, which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dcconverter is suggested by the use of coupled inductor techniques. Since itcompensates for mismatches in photovoltaic devices and allows for separateand continuous power flow from these sources. The proposed converter hasthe benefits of high gain, a low ripple in the output voltage, minimal stressvoltage across the power semiconductor devices, a low ripple in inductorcurrent, high power density, and high efficiency. Soft-switching techniquesare used to realize that the reverse recovery issue of the diodes is moderated, the leakage energy is reused, and no new scheme is appropriated. Toreduce conduction losses, minimum voltage rating MOSFETs with a low ONresistance can be utilized. The converter can supply the required power fromthe load in the absence of one or two resources. Furthermore, due to the highgain of boosting voltage, the converter works in an Adaptive Neuro-FuzzyInference System (ANFIS). The operation principle, steady-state analysis ofthe proposed converter, is given and simulated utilizing MATLAB/Simulinksimulation software.展开更多
A novel three-level zero-voltage zero-current switching(ZVZCS)DC/DC converter is proposed in this paper.A tapped-inductor is used to replace the normal out-put filter inductor,so that the circulating current in the ze...A novel three-level zero-voltage zero-current switching(ZVZCS)DC/DC converter is proposed in this paper.A tapped-inductor is used to replace the normal out-put filter inductor,so that the circulating current in the zero-state can be reset to zero.The reset voltage and the re-set time can be set conveniently just by simply changing the winding ratio of the tapped inductor.The converter achieves a zero-current tuning off for inner switching,and a zero-voltage tuning on for outer switching.No circulating current exists in the zero state,so that the loss in the on-state is reduced,and the efficiency can be improved.The experimental results verify that the ZVZCS has low voltage stress,zero-voltage and zero-current switching.展开更多
基金Sponsored by the Scientific Research Foundaltion fbr the Returned Overseas Chinese Scholars,Ministry of Education
文摘Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis, PSIM simulation and circuit experiment. A special limitation of soft-switching techniques has been found in their AC/DC applications.
基金This project is supported by National Natural Science Foundation of China (No.59975030)Provincial Natural Science Foundation of Guangdong,China(No.04300691).
文摘A novel 60 kW plasma converter with full range soft-switch by utilizing magnetizing inductance, leakage inductance and distributed inductance is introduced. The current injection phase-shifting technique is introduced into the research of soft-switching plasma converter successfully. The magnetic bias of transformer and the protection of switching parts are solved. The tests state that the power supply has excellent characteristics and higher efficiency and can meet the demand of large power plasma process well.
基金the National Natural Science Foundation of China (No. 90707002)the Natural Science Foundation of Zheji-ang Province, China (No. Z104441)
文摘This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with valley switching (CCMVS) is employed to realize soft switching so as to reduce turn-on loss of power switch as well as conducted electromagnetic interference (EMI). At light load, the converter operates in discontinuous conduction mode (DCM) with valley switching and adaptive off-time control (AOT) to limit the switching frequency range and maintain load regulation. At extremely light load or in standby mode, burst mode operation is adopted to provide low power consumption through reducing both switching frequency and static power dissipation of the controller. The multi-mode control is implemented by an oscillator whose pulse duration is adjusted by output feedback. An accurate valley switching control circuit guarantees the minimum turn-on voltage drop of power switch. The pro-totype of the controller IC was fabricated in a 1.5-μm BiCMOS process and applied to a 310 V/20 V, 90 W flyback DC/DC converter circuitry. Experimental results showed that all expected functions were realized successfully. The flyback converter achieved a high efficiency of over 80% from full load down to 2.5 W, with the maximum reaching 88.8%, while the total power consumption in standby mode was about 300 mW.
文摘The systematic mathematical analysis of the high frequency soft-switched AC-AC converter is proposed for variable frequency induction machine load in this paper. Both PWM and square-wave modes of operation have been considered. The frequency relation and phase unbalance problem due to discrete time integral half-cycle switching has been discussed in the beginning. Then, generalized Fourier series have been derived for output voltage, output current and supply current in two modes.The analytical results help to understand tbe converter characteristics, design optimally a convertermachine system of arbitrary capacity considering the various trade-off parameters.
文摘This paper presents a novel mega-Hz-level super high frequency zero-voltage soft-switching converter for induction heating power supplies. The prominent advantage of this topology is that it can absorb both inductive and capacitive parasitic components in the converter. The switch devices operate in a zero-voltage soft-switching mode. Consequently, the high voltage and high current spikes caused by parasitic inductors or capacitors oscillation do not occur in this circuit, and the high power loss caused by high frequency switching can be greatly reduced. A large value inductor is adopted between the input capacitor and the switches, thus, this novel converter shares the benefits of both voltage-type and current-type circuits simultaneously, and there are no needs of dead time between two switches. The working principles in different modes are introduced. Results of simulation and experiments operated at around 1 MHz frequency verify the validity of parasitic components absorption and show that this convener is competent for super high frequency applications.
文摘Renewable electricity options, such as fuel cells, solar photovoltaic,and batteries, are being integrated, which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dcconverter is suggested by the use of coupled inductor techniques. Since itcompensates for mismatches in photovoltaic devices and allows for separateand continuous power flow from these sources. The proposed converter hasthe benefits of high gain, a low ripple in the output voltage, minimal stressvoltage across the power semiconductor devices, a low ripple in inductorcurrent, high power density, and high efficiency. Soft-switching techniquesare used to realize that the reverse recovery issue of the diodes is moderated, the leakage energy is reused, and no new scheme is appropriated. Toreduce conduction losses, minimum voltage rating MOSFETs with a low ONresistance can be utilized. The converter can supply the required power fromthe load in the absence of one or two resources. Furthermore, due to the highgain of boosting voltage, the converter works in an Adaptive Neuro-FuzzyInference System (ANFIS). The operation principle, steady-state analysis ofthe proposed converter, is given and simulated utilizing MATLAB/Simulinksimulation software.
文摘A novel three-level zero-voltage zero-current switching(ZVZCS)DC/DC converter is proposed in this paper.A tapped-inductor is used to replace the normal out-put filter inductor,so that the circulating current in the zero-state can be reset to zero.The reset voltage and the re-set time can be set conveniently just by simply changing the winding ratio of the tapped inductor.The converter achieves a zero-current tuning off for inner switching,and a zero-voltage tuning on for outer switching.No circulating current exists in the zero state,so that the loss in the on-state is reduced,and the efficiency can be improved.The experimental results verify that the ZVZCS has low voltage stress,zero-voltage and zero-current switching.