高效稳定的深度学习分类器有助于提升高光谱遥感影像的分类精度。针对卷积神经网络标量式神经元特征表达能力有限、无法有效建模特征之间空间层次结构关系的不足,设计了一种考虑数据图谱合一特性的端到端高光谱胶囊网络(H-CapsNet)。H-C...高效稳定的深度学习分类器有助于提升高光谱遥感影像的分类精度。针对卷积神经网络标量式神经元特征表达能力有限、无法有效建模特征之间空间层次结构关系的不足,设计了一种考虑数据图谱合一特性的端到端高光谱胶囊网络(H-CapsNet)。H-CapsNet主体由编码器(卷积层、PrimaryCaps层及DigitCats层)和解码器(全连接层)组成,通过在网络输入端嵌入通道和空间注意力模块,以此增强模型对空谱特征的抓取和识别,进而提升网络对特征的聚焦和表达能力。以资源一号02D卫星获取的张家港高光谱影像及公共数据集University of Pavia和University of Houston影像为例进行试验,将H-CapsNet网络与传统机器学习算法和多个深度学习网络进行对比。试验结果表明,在3景不同分辨率的高光谱影像上,H-CapsNet分类网络均取得了最优的分类效果,总体精度相较于其他方法分别提升了2.36%~7.67%、0.16%~11.8%和1.75%~15.58%。H-CapsNet网络对小像素邻域具有较好的适应性,当图像块尺寸有限时,仍可以取得相对理想的分类结果。展开更多
文摘高效稳定的深度学习分类器有助于提升高光谱遥感影像的分类精度。针对卷积神经网络标量式神经元特征表达能力有限、无法有效建模特征之间空间层次结构关系的不足,设计了一种考虑数据图谱合一特性的端到端高光谱胶囊网络(H-CapsNet)。H-CapsNet主体由编码器(卷积层、PrimaryCaps层及DigitCats层)和解码器(全连接层)组成,通过在网络输入端嵌入通道和空间注意力模块,以此增强模型对空谱特征的抓取和识别,进而提升网络对特征的聚焦和表达能力。以资源一号02D卫星获取的张家港高光谱影像及公共数据集University of Pavia和University of Houston影像为例进行试验,将H-CapsNet网络与传统机器学习算法和多个深度学习网络进行对比。试验结果表明,在3景不同分辨率的高光谱影像上,H-CapsNet分类网络均取得了最优的分类效果,总体精度相较于其他方法分别提升了2.36%~7.67%、0.16%~11.8%和1.75%~15.58%。H-CapsNet网络对小像素邻域具有较好的适应性,当图像块尺寸有限时,仍可以取得相对理想的分类结果。