期刊文献+
共找到437篇文章
< 1 2 22 >
每页显示 20 50 100
Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries 被引量:1
1
作者 Yunnan Gao Ling Liu +10 位作者 Yi Jiang Dexin Yu Xiaomei Zheng Jiayi Wang Jingwei Liu Dan Luo Yongguang Zhang Zhenjia Shi Xin Wang Ya‑Ping Deng Zhongwei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期13-48,共36页
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-... Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs. 展开更多
关键词 zinc-air batteries Bifunctional electrocatalysts Design principles Mechanistic understandings
下载PDF
A Review of Rechargeable Zinc-Air Batteries:Recent Progress and Future Perspectives
2
作者 Ghazanfar Nazir Adeela Rehman +8 位作者 Jong-Hoon Lee Choong-Hee Kim Jagadis Gautam Kwang Heo Sajjad Hussain Muhammad Ikram Abeer AAlObaid Seul-Yi Lee Soo-Jin Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期358-401,共44页
Zinc-air batteries(ZABs)are gaining attention as an ideal option for various applications requiring high-capacity batteries,such as portable electronics,electric vehicles,and renewable energy storage.ZABs offer advant... Zinc-air batteries(ZABs)are gaining attention as an ideal option for various applications requiring high-capacity batteries,such as portable electronics,electric vehicles,and renewable energy storage.ZABs offer advantages such as low environmental impact,enhanced safety compared to Li-ion batteries,and cost-effectiveness due to the abundance of zinc.However,early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics.Recent advancements in restructuring the anode,utilizing alternative electrolytes,and developing bifunctional oxygen catalysts have significantly improved ZABs.Scientists have achieved battery reversibility over thousands of cycles,introduced new electrolytes,and achieved energy efficiency records surpassing 70%.Despite these achievements,there are challenges related to lower power density,shorter lifespan,and air electrode corrosion leading to performance degradation.This review paper discusses different battery configurations,and reaction mechanisms for electrically and mechanically rechargeable ZABs,and proposes remedies to enhance overall battery performance.The paper also explores recent advancements,applications,and the future prospects of electrically/mechanically rechargeable ZABs. 展开更多
关键词 zinc-air batteries Energy storage AFFORDABILITY REVERSIBILITY
下载PDF
Apically guiding electron/mass transfer reaction induced by Ag/FeN_(x)Mott-Schottky effect within a hollow star reactor toward high performance zinc-air batteries
3
作者 Kaixiang Shi Kaixin Wang +7 位作者 Tong Li Junhao Li Jie Ren Xu Li Yonggang Min Zhouguang Lu Wei Tan Quanbing Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期106-116,I0004,共12页
The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with e... The disparity in the transfer of carriers(electrons/mass)during the reaction in zinc-air batteries(ZABs)results in sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),along with elevated overpotentials,thereby imposing additional constraints on its utilization.Therefore,the pre-design and target-development of inexpensive,high-performance,and long-term stable bifunctional catalysts are urgently needed.In this work,an apically guiding dual-functional electrocatalyst(Ag-FeN_(x)-N-C)was prepared,in which a hierarchical porous nitrogen-doped carbon with three-dimensional(3D)hollow star-shaped structure is used as a substrate and high-conductivity Ag nanoparticles are coupled with iron nitride(FeN_(x))nanoparticles.Theoretical calculations indicate that the Mott-Schottky heterojunction as an inherent electric field comes from the two-phase bound of Ag and FeN_(x),of which electron accumulation in the FeN_(x)phase region and electron depletion in the Ag phase region promote orientated-guiding charge migration.The effective modulation of local electronic structures felicitously reforms the d-band electron-group distribution,and intellectually tunes the masstransfer reaction energy barriers for both ORR/OER.Additionally,the hollow star-s haped hierarchical porous structure provides an apical region for fast mass transfer.Experimental results show that the halfwave potential for ORR is 0.914 V,and the overpotential for OER is only 327 mV at 10 mA cm^(-2).A rechargeable ZAB with Ag-FeN_(x)-N-C as the air cathode demonstrates long-term cycling performance exceeding 1500 cycles(500 h),with a power density of 180 mW cm^(-2).Moreover,when employing AgFeN_(x)-N-C as the air cathode,flexible ZABs demonstrate a notable open-circuit voltage of 1.42 V and achieve a maximum power density of 65.6 mW cm^(-2).Ag-FeN_(x)-N-C shows guiding electron/mass transfer route and apical reaction microenvironment for the electrocatalyst architecture in the exploration prospects of ZABs. 展开更多
关键词 Hollow star structure Mott-Schottky effect Apically guiding effect Bifunctional catalysis zinc-air batteries
下载PDF
Electronic structure and spin state regulation of vanadium nitride via a sulfur doping strategy toward flexible zinc-air batteries
4
作者 Daijie Deng Honghui Zhang +6 位作者 Jianchun Wu Xing Tang Min Ling Sihua Dong Li Xu Henan Li Huaming Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期239-249,I0007,共12页
Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity... Owing to the distinctive structural characteristics,vanadium nitride(VN)is highly regarded as a catalyst for oxygen reduction reaction(ORR)in zinc-air batteries(ZABs).However,VN exhibits limited intrinsic ORR activity due to the weak adsorption ability to O-containing species.Here,the S-doped VN anchored on N,S-doped multi-dimensional carbon(S-VN/Co/NS-MC)was constructed using the solvothermal and in-situ doping methods.Incorporating sulfur atoms into VN species alters the electron spin state of vanadium in the S-VN/Co/NS-MC for regulating the adsorption energy of vanadium sites to oxygen molecules.The introduced sulfur atoms polarize the V 3d_(z)^(2) electrons,shifting spin-down electrons closer to the Fermi level in the S-VN/Co/NS-MC.Consequently,the introduction of sulfur atoms into VN species enhances the adsorption energy of vanadium sites for oxygen molecules.The*OOH dissociation transitions from being unspontaneous on the VN surface to a spontaneous state on the S-doped VN surface.Then,the ORR barrier on the S-VN/Co/NS-MC surface is reduced.The S-VN/Co/NS-MC demonstrates a higher half-wave potential and limiting current density compared to the VN/Co/N-MC.The S-VN/Co/NS-MC-based liquid ZABs display a power density of 195.7 m W cm^(-2),a specific capacity of 815.7 m A h g^(-1),and a cycling stability exceeding 250 h.The S-VN/Co/NS-MC-based flexible ZABs are successfully employed to charge both a smart watch and a mobile phone.This approach holds promise for advancing the commercial utilization of VN-based catalysts in ZABs. 展开更多
关键词 S-doped VN Electronic structures Spin state regulation Oxygen reduction reaction zinc-air batteries
下载PDF
Novel medium entropy perovskite oxide Sr(FeCoNiMo)_(1/4)O_(3−δ)for zinc-air battery cathode
5
作者 Kaixin Li Juntao Gao +2 位作者 Xu Han Qi Shao Zhe Lü 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期669-678,共10页
It is widely recognized that the development of ZABs is impeded by the kinetic bottleneck of oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).The application of conformational entropy strategy to oxide... It is widely recognized that the development of ZABs is impeded by the kinetic bottleneck of oxygen evolution reaction(OER)and oxygen reduction reaction(ORR).The application of conformational entropy strategy to oxides often involves introducing multiple elements with different properties,thereby providing outstanding bifunctional catalytic activity for OER/ORR.Nevertheless,the possible underlying catalytic pathways and potential interactions between various components are still poorly understood.This paper presents an excellent medium-entropy perovskite oxide,Sr(FeCoNiMo)_(1/4)O_(3−δ)(lower overpotential of 301 mV at 10 mA cm^(−2)).Zinc-air batteries employing it as a cathode catalyst demonstrate excellent round-trip efficiency(62%).By combining theoretical calculation with experiments,we aim to establish the link between the electronic structure of perovskite oxides with different elemental compositions and their OER mechanism.Research reveals that the conformational entropy strategy can simultaneously shift the O 2p-band center and metal d-band center of perovskite oxide towards the vicinity of the Fermi energy level,thereby triggering a more favorable lattice oxygen-participated mechanism(LOM)during the OER process.The outcomes of this work provide crucial insights into the role of conformational entropy strategies in oxygen catalysis and offer potential avenues for constructing efficient and stable electrocatalysts. 展开更多
关键词 Sr(FeCoNiMo)_(1/4)O_(3−δ) Bifunctional catalyst Medium entropy LOM Rechargeable zinc-air batteries
下载PDF
Regulated electronic structure and improved electrocatalytic performances of S-doped FeWO4 for rechargeable zinc-air batteries 被引量:3
6
作者 Huan Wang Li Xu +3 位作者 Daijie Deng Xiaozhi Liu Henan Li Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期359-367,I0009,共10页
The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in ... The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in the multi-dimensional nitrogen-doped carbon structure(S-FeWO_(4)/NC)was successfully synthesized.The doped S atoms optimized the charge distribution in FeWO_(4)and enhanced the intrinsic activity.At the same time,S doping accelerated the formation of reaction intermediates during the adsorption reduction of O_(2)on the surface of S-FeWO_(4)/NC.Accordingly,the S-FeWO_(4)/NC catalyst showed more positive half-wave potential(0.85 V)and better stability than that of the FeWO_(4)/NC catalyst.Furthermore,the S-FeWO_(4)/NC-based zinc-air battery exhibited considerable power density of 150.3m W cm^(-2),high specific capacity of 912.7 m A h g^(-1),and prominent cycle stability up to 220 h.This work provides an assistance to the development of cheap and efficient tungsten-based oxygen reduction catalysts and the promotion of its application in the zinc-air battery. 展开更多
关键词 S doping FeWO4 Oxygen reduction reaction zinc-air batteries
下载PDF
Bulk preparation of free-standing single-iron-atom catalysts directly as the air electrodes for high-performance zinc-air batteries 被引量:3
7
作者 Hong-Bo Zhang Yu Meng +11 位作者 Hong Zhong Lili Zhang Shichao Ding Lingzhe Fang Tao Li Yi Mei Peng-Xiang Hou Chang Liu Scott P.Beckman Yuehe Lin Hui-Ming Cheng Jin-Cheng Li 《Carbon Energy》 SCIE CSCD 2023年第5期57-66,共10页
The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggis... The keen interest in fuel cells and metal-air batteries stimulates a great deal of research on the development of a cost-efficient and high-performance catalyst as an alternative to traditional Pt to boost the sluggish oxygen reduction reaction(ORR)at the cathode.Herein,we report a facile and scalable strategy for the large-scale preparation of a free-standing and flexible porous atomically dispersed Fe-N-doped carbon microtube(FeSAC/PCMT)sponge.Benefiting from its unique structure that greatly facilitates the catalytic kinetics,mass transport,and electron transfer,our FeSAC/PCMT electrode exhibits excellent performance with an ORR potential of 0.942 V at^(-3) mA cm^(-2).When the FeSAC/PCMT sponge was directly used as an oxygen electrode for liquid-state and flexible solid-state zinc-air batteries,high peak power densities of 183.1 and 58.0 mW cm^(-2) were respectively achieved,better than its powdery counterpart and commercial Pt/C catalyst.Experimental and theoretical investigation results demonstrate that such ultrahigh ORR performance can be attributed to atomically dispersed Fe-N_(5) species in FeSAC/PCMT.This study presents a cost-effective and scalable strategy for the fabrication of highly efficient and flexible oxygen electrodes,provides a significant new insight into the catalytic mechanisms,and helps to realize significant advances in energy devices. 展开更多
关键词 atomic Fe-N_(5)species free-standing electrode large-scale preparation oxygen reduction reaction zinc-air battery
下载PDF
Bimetallic ZIFs-derived electrospun carbon nanofiber membrane as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery 被引量:2
8
作者 Yanan Ma Shaoru Tang +5 位作者 Haimeng Wang Yuxuan Liang Dingyu Zhang Xiaoyang Xu Qian Wang Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期138-149,I0006,共13页
The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient s... The recharged zinc-air battery(ZAB) has drawn significant attention owing to increasing requirement for energy conversion and storage devices.Fabricating the efficient bifunctional oxygen catalyst using a convenient strategy is vitally important for the rechargeable ZAB.In this study,the bimetallic ZIFs-containing electrospun(ES) carbon nanofibers membrane with hierarchically porous structure was prepared by coaxial electrospinning and carbonization process,which was expected to be a bifunctional electrocatalyst for ZABs.Owing to the formed dual single-atomic sites of Co-N_(4) and Zn-N_(4),the obtained ES-Co/ZnCNZIFexhibited the preferable performance toward oxygen reduction reaction(ORR) with E1/2of 0.857 V and JLof 5.52 mA cm^(-2),which were more than Pt/C.Meanwhile,it exhibited a marked oxygen evolution reaction(OER) property with overpotential of 462 mV due to the agglomerated metallic Co nanoparticles.Furthermore,the ZAB based on the ES-Co/Zn-CNZIFcarbon nanofibers membranes delivered peak power density of 215 mW cm^(-2),specific capacity of 802.6 mA h g^(-1),and exceptional cycling stability,far larger than Pt/C+RuO_(2)-based ZABs.A solid-state ZAB based on ES-Co/Zn-CNZIFshowed better flexibility and stability with different bending angles. 展开更多
关键词 Electrospun nanofibers membranes Zeolite imidazole framework zinc-air battery ORR/OER bifunction Dual single-atomic sites catalysts
下载PDF
Edge atomic Fe sites decorated porous graphitic carbon as an efficient bifunctional oxygen catalyst for Zinc-air batteries
9
作者 Ruihui Gan Yali Wang +3 位作者 Xiangwu Zhang Yan Song Jingli Shi Chang Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期602-611,I0014,共11页
The development of advanced bifunctional oxygen electrocatalysts for oxygen reduction and evolution reactions(ORR and OER) is critical to the practical application of zinc-air batteries(ZABs). Herein, a silica-assiste... The development of advanced bifunctional oxygen electrocatalysts for oxygen reduction and evolution reactions(ORR and OER) is critical to the practical application of zinc-air batteries(ZABs). Herein, a silica-assisted method is reported to integrate numerous accessible edge Fe-Nx sites into porous graphitic carbon(named Fe-N-G) for achieving highly active and robust oxygen electrocatalysis. Silica facilitates the formation of edge Fe-Nx sites and dense graphitic domains in carbon by inhibiting iron aggregation.The purification process creates a well-developed mass transfer channel for Fe-N-G. Consequently,Fe-N-G delivers a half-wave potential of 0.859 V in ORR and an overpotential of 344 m V at10 m A cm^(-2)in OER. During long-term operation, the graphitic layers protect edge Fe-Nx sites from demetallation in ORR and synergize with Fe OOH species endowing Fe-N-G with enhanced OER activity.Density functional theory calculations reveal that the edge Fe-Nx site is superior to the in-plane Fe-Nx site in terms of OH* dissociation in ORR and OOH* formation in OER. The constructed ZAB based on Fe-N-G cathode shows a higher peak power density of 133 m W cm^(-2)and more stable cycling performance than Pt/C + RuO2counterparts. This work provides a novel strategy to obtain high-efficiency bifunctional oxygen electrocatalysts through space mediation. 展开更多
关键词 Bifunctionality EdgeFe-Nxsites Oxygen catalysis Graphitic domains zinc-air batteries
下载PDF
Manipulating the ion-transference and deposition kinetics by regulating the surface chemistry of zinc metal anodes for rechargeable zinc-air batteries
10
作者 Miao He Chaozhu Shu +8 位作者 Ruixing Zheng Wei Xiang Anjun Hu Yu Yan Zhiqun Ran Minglu Li Xiaojuan Wen Ting Zeng Jianping Long 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期318-330,共13页
Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes h... Aqueous zinc-air battery(ZAB)has attractive features as the potential energy storage system such as high safety,low cost and good environmental compatibility.However,the issue of dendrite growth on zinc metal anodes has seriously hindered the development of ZAB.Herein,the N-doped carbon cloth(NC)prepared via magnetron sputtering is explored as the substrate to induce the uniform nucleation of zinc metal and suppress dendrite growth.Results show that the introduction of heteroatoms accelerates the migration and deposition kinetics of Zn^(2+)by boosting the desolvation process of Zn^(2+),eventually reducing the nucleation overpotential.Besides,theoretical calculation results confirm the zincophilicity of N-containing functional group(such as pyridine N and pyrrole N),which can guide the nucleation and growth of zinc uniformly on the electrode surface by both promoting the redistribution of Zn^(2+) in the vicinity of the surface and enhancing its interaction with zinc atoms.As a result,the half-cell assembled with magnetron sputtered carbon cloth achieves a high zinc stripping/plating coulombic efficiency of 98.8%and long-term stability of over 500 cycles at 0.2 mA cm^(-2).And the Coulombic efficiency reached about 99.5%at the 10th cycle and maintained for more than 210 cycles at a high current density of 5.0 mA cm^(-2).The assembled symmetrical battery can deliver 220 plating/stripping cycles with ultra-low voltage hysteresis of only 11 mV.In addition,the assembled zinc-air full battery with NC-Zn anode delivers a high special capacity of about 429 mAh g_(Zn)^(-1) and a long life of over 430 cycles.The effectiveness of surface functionalization in promoting the transfer and deposition kinetics of Zn^(2+) presented in this work shows enlightening significance in the development of metal anodes in aqueous electrolytes. 展开更多
关键词 Zinc metal anodes Dendrite-free Surface chemical regulation Ion-transference kinetics Aqueous zinc-air battery
下载PDF
Schiff-base polymer derived FeCo-N-doped porous carbon flowers as bifunctional oxygen electrocatalyst for long-life rechargeable zinc-air batteries
11
作者 Yusong Deng Jiahui Zheng +3 位作者 Bei Liu Huaming Li Mei Yang Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期470-478,I0012,共10页
Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient... Rational design and exploration of low-cost and robust bifunctional oxygen electrocatalysts are vitally important for developing high-performance zinc-air batteries(ZABs).Herein,we reported a facile yet cost-efficient approach to construct a bifunctional oxygen reduction reaction(ORR)/oxygen evolution reaction(OER)electrocatalyst composed of N-doped porous carbon nanosheet flowers decorated with Fe Co nanoparticles(Fe Co/N-CF).Rational design of this catalyst is achieved by designing Schiff-base polymer with unique molecular structure via hydrogen bonding of cyanuramide and terephthalaldehyde polycondensate in the presence of metal cations.It exhibits excellent activity and stability for electrocatalysis of ORR/OER,enabling ZAB with a high peak power density of 172 m W cm^(-2)and a large specific capacity of 811 m A h g^(-1)Znat large current.The rechargeable ZAB demonstrates excellent durability for 1000 h with slight voltage decay,far outperforming a couple of precious Pt/Ir-based catalysts.Density functional theory(DFT)calculations reveal that high activity of bimetallic Fe Co stems from enhanced O_(2)and OH-adsorption and accelerated O_(2)dissociation by OAO bond activation. 展开更多
关键词 Rechargeable zinc-air batteries Oxygen electrocatalyst Schiff-base polymer Bimetallic FeCo N-doped porous carbon
下载PDF
Electronically modulated d-band centers of MOF-derived carbon-supported Ru/HfO_(2) for oxygen reduction and aqueous/flexible zinc-air batteries
12
作者 Chuan Hu Fengli Wei +4 位作者 Qinrui Liang Qiming Peng Yuting Yang Tayirjan Taylor Isimjan Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期247-255,I0007,共10页
The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous comp... The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous composite(Ru/HfO_(2)-NC)with Ru/HfO2nanoparticles nested in nitrogen-doped porous carbon via a zeolitic imidazole frameworks-assisted(ZIF)co-precipitation and calcination approach.In particular,ZIF guides an in-situ construction of nested configuration and confines the scattered nanoparticles.Strikingly,Ru/HfO_(2)-NC exhibits unusual ORR activity,superb durability,and methanol tolerance in0.1 M KOH solution with high half-wave potential(E1/2)of 0.83 V and follows a near-4e-reaction pathway.Additionally,the ZAB assembled with cathodic Ru/HfO_(2)-NC outputs a power density of 157.3 m W cm^(-2),a specific capacity of 775 mA h g-1Zn,and a prolonged lifespan of 258 h at 5 mA cm^(-2).Meanwhile,the catalyst has demonstrated potential applicability in flexible ZAB.As suggested by experimental results and density functional theory(DFT)analysis,the remarkable property possibly originated from the optimization of the adsorption and desorption of reactive intermediates caused by the reconfiguration of the electronic structure between Ru and HfO_(2). 展开更多
关键词 Ru/HfO_(2) Charge interaction Oxygen vacancy Oxygen reduction zinc-air battery
下载PDF
Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries 被引量:9
13
作者 Yuting Zhu Kaihang Yue +5 位作者 Chenfeng Xia Shahid Zaman Huan Yang Xianying Wang Ya Yan Bao Yu Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期164-192,共29页
Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic framewo... Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic frameworks(MOFs)derivatives have been widely studied as oxygen electrocatalysts in ZABs.To date,many strategies have been developed to generate efficient oxygen electrocatalysts from MOFs for improving the performance of ZABs.In this review,the latest progress of the MOF-derived non-noble metal-oxygen electrocatalysts in ZABs is reviewed.The performance of these MOF-derived catalysts toward oxygen reduction,and oxygen evolution reactions is discussed based on the categories of metal-free carbon materials,single-atom catalysts,metal cluster/carbon composites and metal compound/carbon composites.Moreover,we provide a comprehensive overview on the design strategies of various MOF-derived non-noble metal-oxygen electrocatalysts and their structure-performance relationship.Finally,the challenges and perspectives are provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs. 展开更多
关键词 Metal-organic framework Non-noble metal Oxygen electrocatalysts Air electrode zinc-air batteries
下载PDF
Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries 被引量:4
14
作者 Zhenjie Lu Songdong Yao +6 位作者 Yanzeng Dong Dongling Wu Haoran Pan Xinning Huang Tao Wang Zhenyu Sun Xingxing Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期87-97,共11页
The exploration of active and robust electrocatalysts for both the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is the bottleneck to realize the commercialization of rechargeable metal-air batteries... The exploration of active and robust electrocatalysts for both the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is the bottleneck to realize the commercialization of rechargeable metal-air batteries and regenerative fuel cells.Here we report facile synthesis of three-dimensional(3 D)carbon nanotube(CNT)/carbon composites using earth-abundant coal as the carbon source,hydrogen reductant and heteroatom dopant to grow CNTs.The prepared composite featuring 3 D structural merits and multiple active sites can efficiently catalyze both ORR and OER,affording high activity,fast kinetics,and long-term stability.With the additional incorporation of manganese,the developed catalyst afforded a potential difference of 0.80 V between ORR at the half wave potential and OER at a current density of 10 mA cm^(-2).The optimized sample has presented excellent OER performance within a constructed solar-powered water splitting system with continuously generating oxygen bubbles at anode.Notably,it can be further used as a durable air-electrode catalyst in constructed Zn-air battery,delivering an initial discharge/charge voltage gap of 0.73 V,a remained voltaic efficiency of 61.2%after 160 cycles and capability to power LED light for at least 80 h.This study provides an efficient approach for converting traditional energy resource i.e.coal to value-added alternative oxygen electrocatalysts in renewable energy conversion systems. 展开更多
关键词 Carbon nanotubes COAL Heteroatom-doping Oxygen reaction zinc-air batteries
下载PDF
Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries:Recent Advances and Future Perspectives 被引量:6
15
作者 Fang Dong Mingjie Wu +4 位作者 Zhangsen Chen Xianhu Liu Gaixia Zhang Jinli Qiao Shuhui Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期257-281,共25页
Rechargeable zinc-air batteries(ZABs)are currently receiving extensive attention because of their extremely high theoretical specific energy density,low manufacturing costs,and environmental friendliness.Exploring bif... Rechargeable zinc-air batteries(ZABs)are currently receiving extensive attention because of their extremely high theoretical specific energy density,low manufacturing costs,and environmental friendliness.Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs.Atomically dispersed metal-nitrogen-carbon(M-N-C)catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis.In this work,general principles for designing atomically dispersed M-N-C are reviewed.Then,strategies aiming at enhancing the bifunctional catalytic activity and stability are presented.Finally,the challenges and perspectives of M-N-C bifunctional oxygen catalysts for ZABs are outlined.It is expected that this review will provide insights into the targeted optimization of atomically dispersed M-N-C catalysts in rechargeable ZABs. 展开更多
关键词 Atomically dispersed metal-nitrogen-carbon Oxygen evolution reaction(OER) Oxygen reduction reaction(ORR) Bifunctional oxygen electrocatalysts zinc-air batteries(ZABs)
下载PDF
Carbon-based cathode materials for rechargeable zinc-air batteries: From current collectors to bifunctional integrated air electrodes 被引量:9
16
作者 Jingkun Wu Bin Liu +5 位作者 Xiayue Fan Jia Ding Xiaopeng Han Yida Deng Wenbin Hu Cheng Zhong 《Carbon Energy》 CAS 2020年第3期370-386,共17页
Rechargeable zinc-air batteries(ZABs)have attracted much attention as the next-generation energy conversion and storage devices due to the abundance and environmental friendliness of zinc(Zn)for anode materials,as wel... Rechargeable zinc-air batteries(ZABs)have attracted much attention as the next-generation energy conversion and storage devices due to the abundance and environmental friendliness of zinc(Zn)for anode materials,as well as the safety and low cost of aqueous electrolytes.However,rational design of nonprecious and low-cost integrated air cathode materials with a desirable bifunctional oxygen electrocatalytic performance remains a great challenge for the commercialization of rechargeable ZABs.In previous research studies,various cost-effective carbon-supported electrocatalysts and light-weight carbon-based current collectors for air cathodes have been developed,showing vast potential in the application of carbon-based materials.To improve the bifunctional performance and integration of air cathodes,efforts with respect to the design of morphology,defects,and synergistic effects of carbon-based materials have been made.In this perspective,the general understanding of the air cathode construction and the battery working mechanism is discussed.The recent progress in the design of carbon-based materials for air cathodes in rechargeable ZABs is summarized.Several possible future research directions and the expected development trends are also discussed,aiming to facilitate the commercialization of advanced rechargeable ZABs in our life. 展开更多
关键词 air cathode CARBON ELECTROCATALYST rechargeable zinc-air battery support
下载PDF
3D hollow sphere Co_3O_4/MnO_2-CNTs:Its high-performance bi-functional cathode catalysis and application in rechargeable zinc-air battery 被引量:2
17
作者 Xuemei Li Nengneng Xu +3 位作者 Haoran Li Min Wang Lei Zhang Jinli Qiao 《Green Energy & Environment》 SCIE 2017年第3期316-328,共13页
There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNT... There has been a continuous need for high active, excellently durable and low-cost electrocatalysts for rechargeable zinc-air batteries. Among many low-cost metal based candidates, transition metal oxides with the CNTs composite have gained increasing attention. In this paper, the 3-D hollow sphere MnO_2 nanotube-supported Co_3O_4 nanoparticles and its carbon nanotubes hybrid material(Co_3 O_4/MnO_2-CNTs) have been synthesized via a simple co-precipitation method combined with post-heat treatment. The morphology and composition of the catalysts are thoroughly analyzed through SEM, TEM, TEM-mapping, XRD, EDX and XPS. In comparison with the commercial 20% Pt/C, Co_3O_4/MnO_2,bare MnO_2 nanotubes and CNTs, the hybrid Co_3O_4/MnO_2-CNTs-350 exhibits perfect bi-functional catalytic activity toward oxygen reduction reaction and oxygen evolution reaction under alkaline condition(0.1 M KOH). Therefore, high cell performances are achieved which result in an appropriate open circuit voltage(~1.47 V),a high discharge peak power density(340 mW cm^(-2)) and a large specific capacity(775 mAh g^(-1) at 10 mA cm^(-2)) for the primary Zn-air battery, a small charge-discharge voltage gap and a high cycle-life(504 cycles at 10 mA cm^(-2) with 10 min per cycle) for the rechargeable Zn-air battery. In particular, the simple synthesis method is suitable for a large-scale production of this bifunctional material due to a green, cost effective and readily available process. 展开更多
关键词 Bi-functional catalyst Oxygen reduction reaction Oxygen evolution reaction Activity and stability Rechargeable zinc-air battery
下载PDF
Metal-organic Frameworks Derived Cobalt Encapsulated in Nitrogen-doped Porous Carbon Nanosheets for Oxygen Reduction Reaction and Rechargeable Zinc-air Batteries 被引量:2
18
作者 KANG Yonggang YANG Wenwu CHEN Bingbing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期355-363,共9页
Nitrogen(N)-doped carbon nanosheets(TCM-900)were prepared by pyrolyzing the cobalt metal organic framework(MOF)and acid treatment.The TCM-900 showed outstanding ORR performance with half-potential of 0.805 V.The densi... Nitrogen(N)-doped carbon nanosheets(TCM-900)were prepared by pyrolyzing the cobalt metal organic framework(MOF)and acid treatment.The TCM-900 showed outstanding ORR performance with half-potential of 0.805 V.The density function theory(DFT)reveals the nitrogen activates the carbon atoms in the framework.The homemade ZAB with TCM-900 as ORR electrocatalyst exhibits high-power density of 45 mW·cm^(-2) and excellent long recharge cycling stability compared to Pt/C at 10 mA·cm^(-2).This work illustrates an attractive future of the rechargeable ZAB. 展开更多
关键词 ORR theoretical calculation zinc-air batteries nitrogen-doped porous material metalorganic framework
下载PDF
Cobalt-based multicomponent nanoparticles supported on N-doped graphene as advanced cathodic catalyst for zinc-air batteries 被引量:1
19
作者 Shanjing Liu Xiaohan Wan +7 位作者 Yue Sun Shiqi Li Xingmei Guo Ming Li Rui Yin Qinghong Kong Jing Kong Junhao Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第12期2212-2220,共9页
To improve the efficiency of cathodic oxygen reduction reaction(ORR)in zinc-air batteries(ZABs),an adsorption-complexation-calcination method was proposed to generate cobalt-based multicomponent nanoparticles comprisi... To improve the efficiency of cathodic oxygen reduction reaction(ORR)in zinc-air batteries(ZABs),an adsorption-complexation-calcination method was proposed to generate cobalt-based multicomponent nanoparticles comprising Co,Co_(3)O_(4)and CoN,as well as numerous N heteroatoms,on graphene nanosheets(Co/Co_(3)O_(4)/CoN/NG).The Co/Co_(3)O_(4)/CoN nanoparticles with the size of less than 50 nm are homogeneously dispersed on N-doped graphene(NG)substrate,which greatly improve the catalytic behaviors for ORR.The results show that the half-wave potential is as high as 0.80 V vs.RHE and the limiting current density is 4.60 mA·cm^(−2),which are close to those of commercially available platinum/carbon(Pt/C)catalysts.Applying as cathodic catalyst for ZABs,the battery shows large specific capacity and open circuit voltage of 843.0 mAh∙g^(−1) and 1.41 V,respectively.The excellent performance is attributed to the efficient two-dimensional structure with high accessible surface area and the numerous multiple active sites provided by highly scattered Co/Co_(3)O_(4)/CoN particles and doped nitrogen on the carbon matrix. 展开更多
关键词 adsorption-complexation-calcination cobalt-based multicomponent nanoparticles N-doped graphene oxygen reduction reaction zinc-air batteries
下载PDF
One-pot synthesis of FeNxC as efficient catalyst for high-performance zinc-air battery 被引量:1
20
作者 Yang Li Kuanda Xu +8 位作者 Qi Zhang Zhi Zheng Shunning Li Qinghe Zhao Can Li Cheng Dong Zongwei Mei Feng Pan Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期100-106,I0004,共8页
Rechargeable zinc-air batteries(ZAB)with a high theoretical energy density of 1086 Wh kg^(-1),have received tremendous research attention.However,the practical application of ZABs is still limited by high polarization... Rechargeable zinc-air batteries(ZAB)with a high theoretical energy density of 1086 Wh kg^(-1),have received tremendous research attention.However,the practical application of ZABs is still limited by high polarization and poor energy efficiency(low power density)due to the sluggish 4 electrons(e^(-))/oxygen(O_(2))kinetics over the air electrode.Here,a noble-metal-free Fe Nx C electrocatalyst is developed via a onepot approach,which provides a high density of the oxygen reduction reaction(ORR)active site and facilitates the ORR kinetics.Accordingly,the as-assembled Zn-air battery displayed a low charge–discharge voltage gap of 0.71 V at 10 m A cm^(-2),a remarkable peak power density as high as 181.2 m W cm^(-2),as well as the long-term durability for hundreds of hours,among the top level of those reported previously.Our work provides a major boost for the practical application of Zn-air battery in the future. 展开更多
关键词 FeNxC Oxygen reduction reaction zinc-air battery
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部