Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l...Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.展开更多
Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.He...Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.Herein,a universal fast zinc-ion diffusion layer on a three-dimensional(3 D)mesh structure model is demonstrated to effectively improve Zn plating/stripping reversibility.The fast ion diffusion alloy layer accelerates the Zn^(2+)migration in an orderly manner to homogenize Zn^(2+)flux and overcomes the defects of the commercial mesh substrate,effectively avoiding dendrite growth and side reactions.Consequently,the proof-of-concept silver-zinc alloy modified stainless steel mesh delivers superb reversibility with the high coulombic efficiency over 99.4%at 4 mA cm^(-2)after 1600 cycles and excellent reliability of over 830 h at 1 mA cm^(-2),Its feasibility is also evidenced in commercial zinc ion hybrid capacitors with activated carbon as the cathode.This work enriches the fundamental comprehension of fast zinc-ion diffusion layer combined with a 3 D substrate on the Zn deposition and opens a universal approach to design advanced host for Zn electrodes in zinc ion hybrid capacitors.展开更多
Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life ...Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life Zn2+storage based on a pseudocapacitive storage mechanism.In the RuO2·H2O||Zn zinc-ion hybrid capacitors with Zn(CF3SO3)2 aqueous electrolyte,the RuO2·H2O cathode can reversibly store Zn2+in a voltage window of 0.4-1.6 V(vs.Zn/Zn2+),delivering a high discharge capacity of 122 mAh g?1.In particular,the zinc-ion hybrid capacitors can be rapidly charged/discharged within 36 s with a very high power density of 16.74 kW kg?1 and a high energy density of 82 Wh kg?1.Besides,the zinc-ion hybrid capacitors demonstrate an ultralong cycle life(over 10,000 charge/discharge cycles).The kinetic analysis elucidates that the ultrafast Zn2+storage in the RuO2·H2O cathode originates from redox pseudocapacitive reactions.This work could greatly facilitate the development of high-power and safe electrochemical energy storage.展开更多
The design and development of energy storage device with high energy/power density has become a research hotspot.Zinc-ion hybrid capacitors(ZHCs)are considered as one of the most promising candidates.However,the appli...The design and development of energy storage device with high energy/power density has become a research hotspot.Zinc-ion hybrid capacitors(ZHCs)are considered as one of the most promising candidates.However,the application of ZHCs is hindered by their low energy density at high power density due to the unsatisfactory cathode material.In this study,a novel 3D phosphorus-doped carbon nanotube/reduced graphene oxide(P-CNT/rGO)aerogel cathode is synthesized through a synergistic modification strategy of CNT insertion and P doping modification combined with 3D porous design.The as-obtained P-CNT/rGO aerogel cathode manifests significantly increased surface aera,expanded interlayer spacing,and enhanced pseudocapacitance behavior,thus leading to significantly enhanced specific capacitance and superb ions transport performance.The as-assembled ZHC based on P-CNT/rGO cathode delivers a superior energy density of 42.2 Wh/kg at an extreme-high power density of 80 kW/kg and excellent cycle life.In-depth kinetic analyses are undertaken to prove the enhanced pseudocapacitance behavior and exceptional power output capability of ZHCs.Furthermore,the reaction mechanism of physical and chemical adsorption/desorption of electrolyte ions on the P-CNT/rGO cathode is revealed by systematic ex-situ characterizations.This work can provide a valuable reference for developing advanced graphene-based cathode for high energy/power density ZHCs.展开更多
As prospective energy storage devices,zinc-ion hybrid capacitors(ZHCs)still suffer from unsatisfactory cathode materials.Herein,the three dimensional(3D)N,B dual-doped carbon quantum dots/reduced graphene oxide(N,B-CQ...As prospective energy storage devices,zinc-ion hybrid capacitors(ZHCs)still suffer from unsatisfactory cathode materials.Herein,the three dimensional(3D)N,B dual-doped carbon quantum dots/reduced graphene oxide(N,B-CQDs/rGO)composite aerogel is prepared via a onepot hydrothermal method.Thanks to the synergism of CQDs modification and N,B dual-doping,the resultant N,B-CQDs/rGO composite aerogel delivers superior electrochemical properties.Furthermore,the as-obtained N,B-CQDs/rGO composite aerogel is served as a cathode for aqueous and flexible quasi-solid-state ZHCs for the first time.Impressively,the aqueous N,B-CQDs/rGO//Zn ZHC manifests a large energy density of 96.2 Wh·kg^(-1)at80 W·kg^(-1)and still remains a high energy density of 54.7Wh·kg^(-1)at a superb power density of 80 kW·kg^(-1).Meanwhile,kinetic analyses are employed to elucidate the prominent power performance,and various ex situ tests are undertaken to explore the energy storage mechanism of aqueous ZHC.More notably,the flexible quasi-solid-state N,B-CQDs/rGO//Zn ZHC displays a desirable energy density(89.1μWh·cm^(-2)),a superior power density(96,000μW·cm^(-2))and exceptional flexible performance.The present study offers a valuable reference for designing and developing advanced cathode materials for aqueous and flexible quasi-solid-state ZHCs.展开更多
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modul...Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.展开更多
Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have othe...Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.展开更多
Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appea...Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness,high conductivity and intrinsic flexibility.However,the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors.Here,we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance.The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode.Meanwhile,the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures.More significantly,the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance,delivering high-energy density of 39 Wh kg^(-1)at-60°C with capacity retention of 98.7%over 10,000 cycles.With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte,the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at-60°C.This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.展开更多
Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.Howev...Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.展开更多
Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the ...Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.展开更多
Opportunities coexist with challenges for the development of carbon-based cathodes with a high energy density applied for zinc ion hybrid capacitors(ZIHCs).In the present study,a facile and effective surface engineeri...Opportunities coexist with challenges for the development of carbon-based cathodes with a high energy density applied for zinc ion hybrid capacitors(ZIHCs).In the present study,a facile and effective surface engineering approach is demonstrated to greatly improve the energy storage ability of commercial carbon paper(CP)in ZIHC.Benefiting from the introduced oxygen functional groups,larger surface area and improved surface wettability upon air calcination,the assembled aqueous ZIHC with the functionalized carbon paper(FCP)exhibits a much higher areal capacity of 0.22 mAh/cm^(2)at 1 mA/cm^(2),outperforming the counterpart with blank CP by over 5000 times.More importantly,a superior energy density and power density of 130.8μWh/cm^(2)and 7460.5μW/cm^(2),are respectively delivered.Furthermore,more than 90%of the initial capacity is retained over 10000 cycles.This surface engineering strategy to improve the energy storage capability is potentially applicable to developing a wide range of high-energy carbon electrode materials.展开更多
Wearable self-powered systems integrated with energy conversion and storage devices such as solar-charging power units arouse widespread concerns in scientific and industrial realms.However,their applications are hamp...Wearable self-powered systems integrated with energy conversion and storage devices such as solar-charging power units arouse widespread concerns in scientific and industrial realms.However,their applications are hampered by the restrictions of unbefitting size matching between integrated modules,limited tolerance to the variation of input current,reliability,and safety issues.Herein,flexible solar-charging self-powered units based on printed Zn-ion hybrid micro-capacitor as the energy storage module is developed.Unique 3D micro-/nano-architecture of the biomass kelp-carbon combined with multivalent ion(Zn2+)storage endows the aqueous Zn-ion hybrid capacitor with high specific capacity(196.7 mAh g^−1 at 0.1 A g^−1).By employing an in-plane asymmetric printing technique,the fabricated quasi-solid-state Zn-ion hybrid microcapacitors exhibit high rate,long life and energy density up to 8.2μWh cm^−2.After integrating the micro-capacitor with organic solar cells,the derived self-powered system presents outstanding energy conversion/storage efficiency(ηoverall=17.8%),solar-charging cyclic stability(95%after 100 cycles),wide current tolerance,and good mechanical flexibility.Such portable,wearable,and green integrated units offer new insights into design of advanced self-powered systems toward the goal of developing highly safe,economic,stable,and long-life smart wearable electronics.展开更多
Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applic...Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.展开更多
Carbon nanofibers films are typical flexible electrode in the field of energy storage,but their application in Zinc-ion hybrid capacitors(ZIHCs)is limited by the low energy density due to the lack of active adsorption...Carbon nanofibers films are typical flexible electrode in the field of energy storage,but their application in Zinc-ion hybrid capacitors(ZIHCs)is limited by the low energy density due to the lack of active adsorption sites.In this work,an in-situ exfoliation strategy is reported to modulate the chemisorption sites of carbon nanofibers by high pyridine/pyrrole nitrogen doping and carbonyl functionalization.The experimental results and theoretical calculations indicate that the highly electronegative pyridine/pyrrole nitrogen dopants can not only greatly reduce the binding energy between carbonyl group and Z n2+by inducing charge delocalization of the carbonyl group,but also promote the adsorption of Zn2+by bonding with the carbonyl group to form N–Zn–O bond.Benefit from the multiple highly active chemisorption sites generated by the synergy between carbonyl groups and pyridine/pyrrole nitrogen atoms,the resulting carbon nanofibers film cathode displays a high energy density,an ultralong-term lifespan,and excellent capacity reservation under commercial mass loading(14.45 mg cm-2).Particularly,the cathodes can also operate stably in flexible or quasi-solid devices,indicating its application potential in flexible electronic products.This work established a universal method to solve the bottleneck problem of insufficient active adsorption sites of carbon-based ZIHCs.Imoproved should be changed into Improved.展开更多
Zinc-ion hybrid supercapacitors(ZHSCs)have garnered increasing attention as promising energy storage devices in recent years,as they combine the advantages of high-energy Zn-ion batteries and high-power supercapacitor...Zinc-ion hybrid supercapacitors(ZHSCs)have garnered increasing attention as promising energy storage devices in recent years,as they combine the advantages of high-energy Zn-ion batteries and high-power supercapacitors.However,the development of ZHSCs is still in its infancy and there are many bottlenecks to overcome.In particular,the challenge induced by the limited ion adsorption capability of carbon-positive electrodes severely restricts the energy density of ZHSCs.Therefore,it has become a key issue to design novel carbon-positive electrodes that enable high energy density yet do not deteriorate the intrinsic power capability and long-term durability.This study focuses on recent achievements in synthesis,morphology,and electrochemical performance of various carbon materials applied in ZHSCs.The modification strategies to optimize their electrochemical performance are briefly summarized.In addition,current challenges and future opportunities in this field are also outlined.This review will be beneficial to provide an organized framework for the research systems of carbon-positive electrodes and develop novel ZHSCs with high energy density.展开更多
Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged inter...Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged interlayer spacing,abundant defects,and favorable mesoporous structures.The structural changes of NPCNs in potassiation and depotassiation processes are analyzed by using Raman spectroscopy and transmission electron microscopy.Due to the unique structure of NPCNs,the PIHC device assembled using NPCNs as both the anode and cathode material(double-functional self-matching material)exhibits a superior energy density of 128 Wh kg^(-1)with a capacity retention of 90.8%after 9000 cycles.This research can promote the development of double-functional self-matching materials for hybrid energy storage devices with ultra-high performance.展开更多
Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrog...Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrogen enriched porous carbon(nPC)was successfully synthesized via the growth,subsequent annealing and acid etching of bimetal organic frameworks for high capacity and safe ZIHCs with exceptional rate capability.Benefiting from the mesopores for easy ion diffusion,high electrical conductivity enabled by in-situ grown carbon nanotubes matrix and residual metal Co nanoparticles for fast electron transfer,sufficient micropores and high N content(8.9 at%)with dominated pyridinic N(54%)for enhanced zinc ion storage,the resulting nPC cathodes for ZIHCs achieved high capacities of 302 and137 m Ah g^(-1) at 1 and 18 A g^(-1),outperforming most reported carbon based cathodes.Theoretical results further disclosed that pyridinic N possessed larger binding energy of-4.99 eV to chemically coordinate with Zn2+than other N species.Moreover,quasi-solid-state ZIHCs with gelatin based gel electrolytes exhibited high energy density of 157.6 Wh kg^(-1) at 0.69 kW kg^(-1),high safety and mechanical flexibility to withstand mechanical deformation and drilling.This strategy of developing pyridinic nitrogen enriched porous carbon will pave a new avenue to construct safe ZIHCs with high energy densities.展开更多
Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of ...Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.展开更多
Potassium-based energy storage devices(PEDS)are considered as hopeful candidates for energy storage applications because of the abundant potassium resources in nature and high mobility in the electrolyte.although carb...Potassium-based energy storage devices(PEDS)are considered as hopeful candidates for energy storage applications because of the abundant potassium resources in nature and high mobility in the electrolyte.although carbon materials show great potential for potassium-ion storage,poor rate performance,and unsatisfactory cycle lifespan in existing carbon-based PIBs anode,it also cannot match the dynamics and stability of the capacitor cathode.Nitrogen doping has been proven to be a effective modification strategy to improve the electrochemical performance of carbon materials.Hence,we prepare carbon nanofibers and g-C_(3)N_(4)composites with high nitrogen contents(19.78 at%);moreover,the sum of pyrrolic N and pyridinic N is up to 59.51%.It achieves high discharge capacity(391 m Ah g^(-1)at0.05 A g^(-1)),rate capacity(141 m Ah g^(-1)at 2 A g^(-1)),and long cycling performance(201 m Ah g^(-1)at 1 A g^(-1)over 3000 cycles)when as an anode for PIBs.Furthermore,it can deliver promising discharge capacity of132 m Ah g^(-1)at 0℃.Moreover,as battery anode for potassium-ion hybrid capacitors(PIHC)device with an active carbon cathode,it delivers energy/power density(62 and 2102 W kg^(-1))as well as high reversible capacity(106 m Ah g^(-1)at 1 A g^(-1)).展开更多
Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons...Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities.Nevertheless,most lignocellulose biomasses lack heteroatoms,making it a challenge to design highly heteroatom-doped carbons(>10 at%).Herein,we report a new preparation strategy for amorphous carbon anodes.Nitrogen/sulfur co-doped lignin-derived porous carbons(NSLPC)with ultra-high nitrogen doping levels(21.6 at%of N and 0.8 at%of S)from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy.This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product,which induces the formation of high heteroatom doping in the obtained NSLPC.This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+and improved kinetics.The NSLPC anode delivered a high reversible capacity of 419 mAh g^(-1)and superior cycling stability(capacity retention of 96.6%at 1 A g^(-1)for 1000 cycles).Potassiumion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability(91%capacity retention for 2000 cycles)and a high energy density of 71 Wh kg^(-1)at a power density of 92 W kg^(-1).展开更多
基金financial support from Project funded by National Natural Science Foundation of China(52172038,22179017)funding from Dalian University of Technology Open Fund for Large Scale Instrument Equipment
文摘Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability.
基金financially supported by the National Natural Science Foundation of China(51901249,U1904216)。
文摘Although aqueous zinc ion hybrid capacitors have advantageous integration of batteries and supercapacitors,they still suffer from the inherent problems of dendrite growth and interfacial side reactions on Zn anodes.Herein,a universal fast zinc-ion diffusion layer on a three-dimensional(3 D)mesh structure model is demonstrated to effectively improve Zn plating/stripping reversibility.The fast ion diffusion alloy layer accelerates the Zn^(2+)migration in an orderly manner to homogenize Zn^(2+)flux and overcomes the defects of the commercial mesh substrate,effectively avoiding dendrite growth and side reactions.Consequently,the proof-of-concept silver-zinc alloy modified stainless steel mesh delivers superb reversibility with the high coulombic efficiency over 99.4%at 4 mA cm^(-2)after 1600 cycles and excellent reliability of over 830 h at 1 mA cm^(-2),Its feasibility is also evidenced in commercial zinc ion hybrid capacitors with activated carbon as the cathode.This work enriches the fundamental comprehension of fast zinc-ion diffusion layer combined with a 3 D substrate on the Zn deposition and opens a universal approach to design advanced host for Zn electrodes in zinc ion hybrid capacitors.
基金the financial support by the Australian Research Council through the ARC Discovery projects(DP160104340 and DP170100436)Rail Manufacturing Cooperative Research Centre(RMCRC 1.1.1 and RMCRC 1.1.2 projects)+1 种基金financially supported by the International Science&Technology Cooperation Program of China(No.2016YFE0102200)Shenzhen Technical Plan Project(No.JCYJ20160301154114273).
文摘Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life Zn2+storage based on a pseudocapacitive storage mechanism.In the RuO2·H2O||Zn zinc-ion hybrid capacitors with Zn(CF3SO3)2 aqueous electrolyte,the RuO2·H2O cathode can reversibly store Zn2+in a voltage window of 0.4-1.6 V(vs.Zn/Zn2+),delivering a high discharge capacity of 122 mAh g?1.In particular,the zinc-ion hybrid capacitors can be rapidly charged/discharged within 36 s with a very high power density of 16.74 kW kg?1 and a high energy density of 82 Wh kg?1.Besides,the zinc-ion hybrid capacitors demonstrate an ultralong cycle life(over 10,000 charge/discharge cycles).The kinetic analysis elucidates that the ultrafast Zn2+storage in the RuO2·H2O cathode originates from redox pseudocapacitive reactions.This work could greatly facilitate the development of high-power and safe electrochemical energy storage.
基金financially supported by Distinguished Young Scientists of Hunan Province(No.2022JJ10024)National Natural Science Foundation of China(No.21601057)+1 种基金Natural Science Foundation of Hunan Province(No.2021JJ30216)Key Projects of Hunan Provincial Education Department(No.22A0412).
文摘The design and development of energy storage device with high energy/power density has become a research hotspot.Zinc-ion hybrid capacitors(ZHCs)are considered as one of the most promising candidates.However,the application of ZHCs is hindered by their low energy density at high power density due to the unsatisfactory cathode material.In this study,a novel 3D phosphorus-doped carbon nanotube/reduced graphene oxide(P-CNT/rGO)aerogel cathode is synthesized through a synergistic modification strategy of CNT insertion and P doping modification combined with 3D porous design.The as-obtained P-CNT/rGO aerogel cathode manifests significantly increased surface aera,expanded interlayer spacing,and enhanced pseudocapacitance behavior,thus leading to significantly enhanced specific capacitance and superb ions transport performance.The as-assembled ZHC based on P-CNT/rGO cathode delivers a superior energy density of 42.2 Wh/kg at an extreme-high power density of 80 kW/kg and excellent cycle life.In-depth kinetic analyses are undertaken to prove the enhanced pseudocapacitance behavior and exceptional power output capability of ZHCs.Furthermore,the reaction mechanism of physical and chemical adsorption/desorption of electrolyte ions on the P-CNT/rGO cathode is revealed by systematic ex-situ characterizations.This work can provide a valuable reference for developing advanced graphene-based cathode for high energy/power density ZHCs.
基金financially supported by the Distinguished Young Scientists of Hunan Province(No.2022JJ10024)the National Natural Science Foundation of China(No.21601057)+1 种基金the Natural Science Foundation of Hunan Province(No.2021JJ30216)Key Projects of Hunan Provincial Education Department(No.22A0412)。
文摘As prospective energy storage devices,zinc-ion hybrid capacitors(ZHCs)still suffer from unsatisfactory cathode materials.Herein,the three dimensional(3D)N,B dual-doped carbon quantum dots/reduced graphene oxide(N,B-CQDs/rGO)composite aerogel is prepared via a onepot hydrothermal method.Thanks to the synergism of CQDs modification and N,B dual-doping,the resultant N,B-CQDs/rGO composite aerogel delivers superior electrochemical properties.Furthermore,the as-obtained N,B-CQDs/rGO composite aerogel is served as a cathode for aqueous and flexible quasi-solid-state ZHCs for the first time.Impressively,the aqueous N,B-CQDs/rGO//Zn ZHC manifests a large energy density of 96.2 Wh·kg^(-1)at80 W·kg^(-1)and still remains a high energy density of 54.7Wh·kg^(-1)at a superb power density of 80 kW·kg^(-1).Meanwhile,kinetic analyses are employed to elucidate the prominent power performance,and various ex situ tests are undertaken to explore the energy storage mechanism of aqueous ZHC.More notably,the flexible quasi-solid-state N,B-CQDs/rGO//Zn ZHC displays a desirable energy density(89.1μWh·cm^(-2)),a superior power density(96,000μW·cm^(-2))and exceptional flexible performance.The present study offers a valuable reference for designing and developing advanced cathode materials for aqueous and flexible quasi-solid-state ZHCs.
基金financially supported by the National Natural Science Foundation of China (No.52172218)。
文摘Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.
文摘Zinc-ion capacitors(ZICs),which consist of a capacitor-type electrode and a battery-type electrode,not only possess the high power density of supercapacitors and the high energy density of batteries,but also have other advantages such as abundant resources,high safety and environmental friendliness.However,they still face problems such as insufficient specific capacitance,a short cycling life,and narrow operating voltage and temperature ranges,which are hindering their practical use.We provide a comprehensive overview of the fundamental theory of carbon-based ZICs and summarize recent research progress from three perspectives:the carbon cathode,electrolyte and zinc anode.The influence of the structure and surface chemical properties of the carbon materials on the capacitive performance of ZICs is considered together with theoretical guidance for advancing their development and practical use.
基金This work was supported by the Natural Science Foundation of Jiangsu Province(BK20220213)the Fundamental Research Funds of Jiangsu Key Laboratory of Biomass Energy and Material(JSBEM-S-202210 and JSBEM-S-202102).
文摘Solid-state zinc-ion capacitors are emerging as promising candidates for large-scale energy storage owing to improved safety,mechanical and thermal stability and easy-to-direct stacking.Hydrogel electrolytes are appealing solid-state electrolytes because of eco-friendliness,high conductivity and intrinsic flexibility.However,the electrolyte/electrode interfacial contact and anti-freezing properties of current hydrogel electrolytes are still challenging for practical applications of zinc-ion capacitors.Here,we report a class of hydrogel electrolytes that couple high interfacial adhesion and anti-freezing performance.The synergy of tough hydrogel matrix and chemical anchorage enables a well-adhered interface between hydrogel electrolyte and electrode.Meanwhile,the cooperative solvation of ZnCl2 and LiCl hybrid salts renders the hydrogel electrolyte high ionic conductivity and mechanical elasticity simultaneously at low temperatures.More significantly,the Zn||carbon nanotubes hybrid capacitor based on this hydrogel electrolyte exhibits low-temperature capacitive performance,delivering high-energy density of 39 Wh kg^(-1)at-60°C with capacity retention of 98.7%over 10,000 cycles.With the benefits of the well-adhered electrolyte/electrode interface and the anti-freezing hydrogel electrolyte,the Zn/Li hybrid capacitor is able to accommodate dynamic deformations and function well under 1000 tension cycles even at-60°C.This work provides a powerful strategy for enabling stable operation of low-temperature zinc-ion capacitors.
基金supported by the National Natural Science Foundation of China(No.52002320,and 51972267)the China Postdoctoral Science Foundation(No.2022M712574)+3 种基金the Science Foundation of Shaanxi Province(2022GD-TSLD-18,No.2023-JCZD-03)Natural Science Foundation of Shaanxi Province(No.2022GY-372,2021GY-153)Industrial Projects Foundation of Ankang Science and Technology Bureau(No.AK2020-GY02-2)the Platform Construction Projects and Technology Service Teams of Ankang University(No.2021AYPT12 and 2022TD07)。
文摘Sodium-ion batteries(SIBs) and hybrid capacitors(SIHCs) have garnered significant attention in energy storage due to their inherent advantages,including high energy density,cost-effectiveness,and enhanced safety.However,developing high-performance anode materials to improve sodium storage performa nce still remains a major challenge.Here,a facile one-pot method has been developed to fabricate a hybrid of MoSeTe nanosheets implanted within the N,F co-doped honeycomb carbon skeleton(MoSeTe/N,F@C).Experimental results demonstrate that the incorporation of large-sized Te atoms into MoSeTe nanosheets enlarges the layer spacing and creates abundant anion vacancies,which effectively facilitate the insertion/extraction of Na^(+) and provide numerous ion adsorption sites for rapid surface capacitive behavior.Additionally,the heteroatoms N,F co-doped honeycomb carbon skeleton with a highly conductive network can restrain the volume expansion and boost reaction kinetics within the electrode.As anticipated,the MoSeTe/N,F@C anode exhibits high reversible capacities along with exceptional cycle stability.When coupled with Na_(3)V_(2)(PO_(4))_(3)@C(NVPF@C) to form SIB full cells,the anode delivers a reversible specific capacity of 126 mA h g^(-1) after 100 cycles at 0.1 A g^(-1).Furthermore,when combined with AC to form SIHC full cells,the anode demonstrates excellent cycling stability with a reversible specific capacity of50 mA h g^(-1) keeping over 3700 cycles at 1.0 A g^(-1).In situ XRD,ex situ TEM characterization,and theoretical calculations(DFT) further confirm the reversibility of sodium storage in MoSeTe/N,F@C anode materials during electrochemical reactions,highlighting their potential for widespread practical application.This work provides new insights into the promising utilization of advanced transition metal dichalcogenides as anode materials for Na^(+)-based energy storage devices.
基金Project(22109181)supported by the National Natural Science Foundation of ChinaProject(2022JJ40576)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Aqueous zinc ion hybrid capacitors(ZIHCs)are considered one of the most promising electrochemical energy storage systems due to their high safety,environmental friendliness,low cost,and high power density.However,the low energy density and the lack of sustainable design strategies for the cathodes hinder the practical application of ZIHCs.Herein,we design the N and O co-doped porous carbon cathode by annealing metal-organic framework(ZIF-8).ZIF-8 retains the original dodecahedral structure with a high specific surface(2814.67 m^(2)/g)and I_(G)/I_(D) ratio of 1.0 during carbonization and achieves self-doping of N and O heteroatoms.Abundant defect sites are introduced into the porous carbon to provide additional active sites for ion adsorption after the activation of carbonized ZIF-8 by KOH treatment.The ZIHCs assembled with modified ZIF-8 as the cathode and commercial zinc foil as the anode show an energy density of 125 W∙h/kg and a power density of 79 W/kg.In addition,this ZIHCs device achieves capacity retention of 77.8%after 9000 electrochemical cycles,which is attributed to the diverse pore structure and plentiful defect sites of ZIF-8-800(KOH).The proposed strategy may be useful in developing high-performance metal-ion hybrid capacitors for large-scale energy storage.
基金This research was funded by Key Scientific Research Projects of General Universities in Guangdong Province,China(No.2021KCXTD086)Guangzhou Basic and Applied Basic Research Project in China(No.202102020134)Youth Innovation Talents Project of Guangdong Universities(natural science)in China(No.2019KQNCX098).
文摘Opportunities coexist with challenges for the development of carbon-based cathodes with a high energy density applied for zinc ion hybrid capacitors(ZIHCs).In the present study,a facile and effective surface engineering approach is demonstrated to greatly improve the energy storage ability of commercial carbon paper(CP)in ZIHC.Benefiting from the introduced oxygen functional groups,larger surface area and improved surface wettability upon air calcination,the assembled aqueous ZIHC with the functionalized carbon paper(FCP)exhibits a much higher areal capacity of 0.22 mAh/cm^(2)at 1 mA/cm^(2),outperforming the counterpart with blank CP by over 5000 times.More importantly,a superior energy density and power density of 130.8μWh/cm^(2)and 7460.5μW/cm^(2),are respectively delivered.Furthermore,more than 90%of the initial capacity is retained over 10000 cycles.This surface engineering strategy to improve the energy storage capability is potentially applicable to developing a wide range of high-energy carbon electrode materials.
基金the National Natural Science Foundation of Hubei Province(Grant No.2019CFB110)the fund of the Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials(Grant No.1-KF-2019).
文摘Wearable self-powered systems integrated with energy conversion and storage devices such as solar-charging power units arouse widespread concerns in scientific and industrial realms.However,their applications are hampered by the restrictions of unbefitting size matching between integrated modules,limited tolerance to the variation of input current,reliability,and safety issues.Herein,flexible solar-charging self-powered units based on printed Zn-ion hybrid micro-capacitor as the energy storage module is developed.Unique 3D micro-/nano-architecture of the biomass kelp-carbon combined with multivalent ion(Zn2+)storage endows the aqueous Zn-ion hybrid capacitor with high specific capacity(196.7 mAh g^−1 at 0.1 A g^−1).By employing an in-plane asymmetric printing technique,the fabricated quasi-solid-state Zn-ion hybrid microcapacitors exhibit high rate,long life and energy density up to 8.2μWh cm^−2.After integrating the micro-capacitor with organic solar cells,the derived self-powered system presents outstanding energy conversion/storage efficiency(ηoverall=17.8%),solar-charging cyclic stability(95%after 100 cycles),wide current tolerance,and good mechanical flexibility.Such portable,wearable,and green integrated units offer new insights into design of advanced self-powered systems toward the goal of developing highly safe,economic,stable,and long-life smart wearable electronics.
基金the financial support from the National Natural Science Foundation of China (22108044)the 111 Project (B20088)+3 种基金the Fundamental Research Funds for the Central Universities (2572022DJ02)the Research and Development Program in Key Fields of Guangdong Province (2020B1111380002)the Basic Research and Applicable Basic Research in Guangzhou City (202201010290)the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (2021GDKLPRB07)。
文摘Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.
基金funds from the National Natural Science Foundation of China(51772082,51804106,and 51574117)the Natural Science Foundation of Hunan Province(2019JJ30002,2019JJ50061 and 2020CB1007)Natural Science Foundation of Guangdong Providence(2018A030310571)。
文摘Carbon nanofibers films are typical flexible electrode in the field of energy storage,but their application in Zinc-ion hybrid capacitors(ZIHCs)is limited by the low energy density due to the lack of active adsorption sites.In this work,an in-situ exfoliation strategy is reported to modulate the chemisorption sites of carbon nanofibers by high pyridine/pyrrole nitrogen doping and carbonyl functionalization.The experimental results and theoretical calculations indicate that the highly electronegative pyridine/pyrrole nitrogen dopants can not only greatly reduce the binding energy between carbonyl group and Z n2+by inducing charge delocalization of the carbonyl group,but also promote the adsorption of Zn2+by bonding with the carbonyl group to form N–Zn–O bond.Benefit from the multiple highly active chemisorption sites generated by the synergy between carbonyl groups and pyridine/pyrrole nitrogen atoms,the resulting carbon nanofibers film cathode displays a high energy density,an ultralong-term lifespan,and excellent capacity reservation under commercial mass loading(14.45 mg cm-2).Particularly,the cathodes can also operate stably in flexible or quasi-solid devices,indicating its application potential in flexible electronic products.This work established a universal method to solve the bottleneck problem of insufficient active adsorption sites of carbon-based ZIHCs.Imoproved should be changed into Improved.
基金The authors thank the financial support of this study received by the National Natural Science Foundation of China(21822509,U1810110,and 21802173)the Science and Technology Planning Project of Guangdong Province(2018A050506028)the Natural Science Foundation of Guangdong Province(2018A030310301).
文摘Zinc-ion hybrid supercapacitors(ZHSCs)have garnered increasing attention as promising energy storage devices in recent years,as they combine the advantages of high-energy Zn-ion batteries and high-power supercapacitors.However,the development of ZHSCs is still in its infancy and there are many bottlenecks to overcome.In particular,the challenge induced by the limited ion adsorption capability of carbon-positive electrodes severely restricts the energy density of ZHSCs.Therefore,it has become a key issue to design novel carbon-positive electrodes that enable high energy density yet do not deteriorate the intrinsic power capability and long-term durability.This study focuses on recent achievements in synthesis,morphology,and electrochemical performance of various carbon materials applied in ZHSCs.The modification strategies to optimize their electrochemical performance are briefly summarized.In addition,current challenges and future opportunities in this field are also outlined.This review will be beneficial to provide an organized framework for the research systems of carbon-positive electrodes and develop novel ZHSCs with high energy density.
基金financially supported by the National Natural Science Foundation of China(Nos.21873026,21573061,21773059)。
文摘Potassium-ion hybrid capacitors(PIHCs)as a burgeoning research hotspot are an ideal replacement for lithium-ion hybrid capacitors(LIHCs).Here,we report nitrogen-doped porous carbon nanosheets(NPCNs)with enlarged interlayer spacing,abundant defects,and favorable mesoporous structures.The structural changes of NPCNs in potassiation and depotassiation processes are analyzed by using Raman spectroscopy and transmission electron microscopy.Due to the unique structure of NPCNs,the PIHC device assembled using NPCNs as both the anode and cathode material(double-functional self-matching material)exhibits a superior energy density of 128 Wh kg^(-1)with a capacity retention of 90.8%after 9000 cycles.This research can promote the development of double-functional self-matching materials for hybrid energy storage devices with ultra-high performance.
基金financially supported by the National Key R@D Program of China(Grants 2016YBF0100100 and 2016YFA0200200)National Natural Science Foundation of China(Grants 51872283,and 21805273)+8 种基金Liaoning BaiQianWan Talents Program,LiaoNing Revitalization Talents Program(Grant XLYC1807153)Natural Science Foundation of Liaoning Province(2020-MS-095)Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grants 20180510038)DICP(DICP ZZBS201708,DICP ZZBS201802,and DICP I202032)DICP&QIBEBT(Grant No.DICP&QIBEBT UN201702)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915)the Fundamental Research Funds for the Central Universities of China(N180503012)the State Key Laboratory of Fine Chemicals(KF1911)the CAS Key Laboratory of Carbon Materials(KLCMKFJJ2004)。
文摘Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrogen enriched porous carbon(nPC)was successfully synthesized via the growth,subsequent annealing and acid etching of bimetal organic frameworks for high capacity and safe ZIHCs with exceptional rate capability.Benefiting from the mesopores for easy ion diffusion,high electrical conductivity enabled by in-situ grown carbon nanotubes matrix and residual metal Co nanoparticles for fast electron transfer,sufficient micropores and high N content(8.9 at%)with dominated pyridinic N(54%)for enhanced zinc ion storage,the resulting nPC cathodes for ZIHCs achieved high capacities of 302 and137 m Ah g^(-1) at 1 and 18 A g^(-1),outperforming most reported carbon based cathodes.Theoretical results further disclosed that pyridinic N possessed larger binding energy of-4.99 eV to chemically coordinate with Zn2+than other N species.Moreover,quasi-solid-state ZIHCs with gelatin based gel electrolytes exhibited high energy density of 157.6 Wh kg^(-1) at 0.69 kW kg^(-1),high safety and mechanical flexibility to withstand mechanical deformation and drilling.This strategy of developing pyridinic nitrogen enriched porous carbon will pave a new avenue to construct safe ZIHCs with high energy densities.
基金supported by the Innovation Foundation of Graduate Student of Harbin Normal University (No.HSDBSCX2023-3),China。
文摘Zn based electrochemical energy storage systems(EES)have attracted tremendous interests owing to their low cost and high intrinsic safety.Nevertheless,the uncontrolled growth of Zn dendrites and the side reactions of Zn metal anodes(ZMAs)severely restrict their applications.To address these issues,we design the asymmetric Zn-N_(4) atomic sites embedded hollow fibers(AS-IHF)as the flexible host for stable ZMAs.Through introducing different nitrogen resources in the synthesis,two kinds of coordination,i,e.Zn-N(pyridinic)and Zn-N(pyrrolic),are introduced in the Zn-N_(4) atomic module synchronously.The asymmetric Zn-N_(4) module with regulated micro-environment facilitates the superior zincophilic features and promotes the Zn adsorption.Meanwhile,the highly porous structure of the hollow fiber effectively reduces local current density,homogenize Zn ion flux,and alleviate structure stress.All the advantages endow the high efficiency and good stability for Zn plating/stripping.Both theoretical and experimental results demonstrate the high reversibility,low nucleation overpotential,and dendritefree behavior of the AS-IHF@Zn anode,which afford the high stability in high-rate and long-term cycling.Moreover,the solid-state Zn-ion hybrid capacitor(ZIHC)based on AS-IHF@Zn anode shows the high flexibility,reliability,and superior long-term cycling capability in a wide-range of temperatures(-20-25℃).Therefore,the present work not only gives a new strategy for modulating local environments of single atomic sites,but also propels the development of flexible power sources for diverse electronics.
基金supported by the National Natural Science Foundation of China(Grants 51772082,51574117,and 51804106)the Research Projects of Degree and Graduate Education Teaching Reformation in Hunan Province(JG2018B031)+2 种基金the Natural Science Foundation of Hunan Province(2019JJ30002,2019JJ50061)the Guangdong Basic and Applied Basic Research Foundation(No.2019B151502045)the National Natural Science Foundation of China(Nos.51802361,51972351)
文摘Potassium-based energy storage devices(PEDS)are considered as hopeful candidates for energy storage applications because of the abundant potassium resources in nature and high mobility in the electrolyte.although carbon materials show great potential for potassium-ion storage,poor rate performance,and unsatisfactory cycle lifespan in existing carbon-based PIBs anode,it also cannot match the dynamics and stability of the capacitor cathode.Nitrogen doping has been proven to be a effective modification strategy to improve the electrochemical performance of carbon materials.Hence,we prepare carbon nanofibers and g-C_(3)N_(4)composites with high nitrogen contents(19.78 at%);moreover,the sum of pyrrolic N and pyridinic N is up to 59.51%.It achieves high discharge capacity(391 m Ah g^(-1)at0.05 A g^(-1)),rate capacity(141 m Ah g^(-1)at 2 A g^(-1)),and long cycling performance(201 m Ah g^(-1)at 1 A g^(-1)over 3000 cycles)when as an anode for PIBs.Furthermore,it can deliver promising discharge capacity of132 m Ah g^(-1)at 0℃.Moreover,as battery anode for potassium-ion hybrid capacitors(PIHC)device with an active carbon cathode,it delivers energy/power density(62 and 2102 W kg^(-1))as well as high reversible capacity(106 m Ah g^(-1)at 1 A g^(-1)).
基金the financial support from the National Natural Science Foundation of China(22108044,22208061)the Research and Development Program in Key Fields of Guangdong Province(2020B1111380002)+1 种基金the Basic Research and Applicable Basic Research in Guangzhou City(202201010290)the financial support from the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery(2021GDKLPRB07)。
文摘Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities.Nevertheless,most lignocellulose biomasses lack heteroatoms,making it a challenge to design highly heteroatom-doped carbons(>10 at%).Herein,we report a new preparation strategy for amorphous carbon anodes.Nitrogen/sulfur co-doped lignin-derived porous carbons(NSLPC)with ultra-high nitrogen doping levels(21.6 at%of N and 0.8 at%of S)from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy.This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product,which induces the formation of high heteroatom doping in the obtained NSLPC.This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+and improved kinetics.The NSLPC anode delivered a high reversible capacity of 419 mAh g^(-1)and superior cycling stability(capacity retention of 96.6%at 1 A g^(-1)for 1000 cycles).Potassiumion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability(91%capacity retention for 2000 cycles)and a high energy density of 71 Wh kg^(-1)at a power density of 92 W kg^(-1).