Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using ca...Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.展开更多
The effects of Zn/Mg ratios on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys aged at 150℃have been investigated by using tensile tests,optical metallography,scanning electron microscopy,transmission ...The effects of Zn/Mg ratios on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys aged at 150℃have been investigated by using tensile tests,optical metallography,scanning electron microscopy,transmission electron microscopy and atom probe tomography analyses.With increasing Zn/Mg ratios,the ageing process is significantly accelerated and the time to peak ageing is reduced.T’phase predominates in alloys of lower Zn/Mg ratios whileη’phase predominates in alloys with a Zn/Mg ratio over 2.86.Co-existence of T’phase andη’phase with a large number density is beneficial to the high strength of alloys.Such precipitates together with narrow precipitate free zones cause a brittle intergranular fracture.A strength model has been established to predict the co-strengthening effect of T’phase andη’phase in Al-Zn-Mg-Cu alloys,including the factors of the grain boundary,solid solution and precipitation.展开更多
The phase constituent evolution of Mg-Zn-Y-Zr alloys with the mole ratio of Y to Zn both in the as-cast and as-annealed states at the Mg-rich corner was investigated by XRD and SEM/EDS analysis and was further explain...The phase constituent evolution of Mg-Zn-Y-Zr alloys with the mole ratio of Y to Zn both in the as-cast and as-annealed states at the Mg-rich corner was investigated by XRD and SEM/EDS analysis and was further explained from the ternary phase diagram calculation. The results show that the formation of the secondary phases in Mg-Zn-Y-Zr alloys firmly depends on the mole ratio of Y to Zn, and X (Mg 12 YZn)-phase, W (Mg 3 Y 2 Zn 3 )-phase and I (Mg 3 YZn 6 )-phase come out in sequence as the ratio of Y to Zn decreases. The mole ratios of Y to Zn with the corresponding phase constituent are suggested quantitatively as follows: the phase constituent is α-Mg + I when the mole ratio of Y to Zn is about 0.164; α-Mg + I +W when the mole ratio of Y to Zn is in the range of 0.164 0.33;α-Mg +W when the mole ratio of Y to Zn is about 0.33; α-Mg +W+X when the mole ratio of Y to Zn is in the range of 0.33 1.32; and α-Mg +X when the mole ratio of Y to Zn is about 1.32. The results also offer a guideline for alloy selection and alloy design in Mg-Zn-Y-Zr system.展开更多
文摘Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.
基金supported by the National Natural Science Foundation of China(No.51871033)the National Key Research and Development Program of China(2016YFB0700401)the Opening Project of State Key Laboratory for Advanced Metals and Materials(No.2020-ZD02)。
文摘The effects of Zn/Mg ratios on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys aged at 150℃have been investigated by using tensile tests,optical metallography,scanning electron microscopy,transmission electron microscopy and atom probe tomography analyses.With increasing Zn/Mg ratios,the ageing process is significantly accelerated and the time to peak ageing is reduced.T’phase predominates in alloys of lower Zn/Mg ratios whileη’phase predominates in alloys with a Zn/Mg ratio over 2.86.Co-existence of T’phase andη’phase with a large number density is beneficial to the high strength of alloys.Such precipitates together with narrow precipitate free zones cause a brittle intergranular fracture.A strength model has been established to predict the co-strengthening effect of T’phase andη’phase in Al-Zn-Mg-Cu alloys,including the factors of the grain boundary,solid solution and precipitation.
基金Project(50725413)supported by the National Natural Science Foundation of China
文摘The phase constituent evolution of Mg-Zn-Y-Zr alloys with the mole ratio of Y to Zn both in the as-cast and as-annealed states at the Mg-rich corner was investigated by XRD and SEM/EDS analysis and was further explained from the ternary phase diagram calculation. The results show that the formation of the secondary phases in Mg-Zn-Y-Zr alloys firmly depends on the mole ratio of Y to Zn, and X (Mg 12 YZn)-phase, W (Mg 3 Y 2 Zn 3 )-phase and I (Mg 3 YZn 6 )-phase come out in sequence as the ratio of Y to Zn decreases. The mole ratios of Y to Zn with the corresponding phase constituent are suggested quantitatively as follows: the phase constituent is α-Mg + I when the mole ratio of Y to Zn is about 0.164; α-Mg + I +W when the mole ratio of Y to Zn is in the range of 0.164 0.33;α-Mg +W when the mole ratio of Y to Zn is about 0.33; α-Mg +W+X when the mole ratio of Y to Zn is in the range of 0.33 1.32; and α-Mg +X when the mole ratio of Y to Zn is about 1.32. The results also offer a guideline for alloy selection and alloy design in Mg-Zn-Y-Zr system.
基金supported by the Jiangsu Province Industry–University–Research Project,China(No.BY20221160)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_3798)+2 种基金the National Natural Science Foundation of China(No.52275339)the Key Research and Development Plan of the Ministry of Science and Technology,China(No.2023YFE0200400)the Science and Technology Project of Jiangsu Province,China(No.BZ2021053)。
基金financially supported by the National Key Research and Development Program of China(No.2020YFB0311201)the National Natural Science Foundation of China(No.51627802)。