Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction...Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.展开更多
Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and ...Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and consistent treatment of nuclear forces as inputs of modern many-body calculations,among which the in-medium similarity renormalization group(IMSRG)and its variants play a vital role.On the other hand,signifcant eforts have been made to provide a unifed description of the structure,decay,and reactions of the nuclei as open quantum systems.While a fully comprehensive and microscopic model has yet to be realized,substantial progress over recent decades has enhanced our understanding of open quantum systems around the dripline,which are often characterized by exotic structures and decay modes.To study these interesting phenomena,Gamow coupled-channel(GCC)method,in which the open quantum nature of few-body valence nucleons coupled to a deformed core,has been developed.This review focuses on the developments of the advanced IMSRG and GCC and their applications to nuclear structure and reactions.展开更多
The experimental research programs of 1950s, to understand the adsorption of CO on W surfaces, changed to ab initio studies in 2000s. The goals were to seek improved practical applications. Most of the studies were ba...The experimental research programs of 1950s, to understand the adsorption of CO on W surfaces, changed to ab initio studies in 2000s. The goals were to seek improved practical applications. Most of the studies were based on density functional theory. Many studies also used programs, such as VASP (Vienna Abinitio simulation package) and CPMD. The computational procedures used plane wave approximations. This needed studies with selection of K points and cutoff energy selection to assure convergence in energy calculations. Observations and analysis of papers published from 2006 to 2022 indicate that the cutoff energies were selected arbitrarily without any needed convergence studies. By selecting a published 2006 paper, this paper has clearly showed that an arbitrary selection of cutoff energy, such as 460 eV, is not in the range of, cutoff energies that assure convergence of energy calculations, with ab initio methods and have indicated correction procedures. .展开更多
Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated...Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH - N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.展开更多
We report an ab initio〉/I〉 study of spectral properties of Ce^3+ doped at Na+ site of the NaF crys-tal, with the charge imbalance compensated by two oxygen substitutions for fluoride (OF') in the first coordina...We report an ab initio〉/I〉 study of spectral properties of Ce^3+ doped at Na+ site of the NaF crys-tal, with the charge imbalance compensated by two oxygen substitutions for fluoride (OF') in the first coordination shell or two sodium vacancies (VNa') in the second coordination sphere. Density functional theory calculations within the supercell model are first performed to op-timize the local structures of the charge-compensated Ce^3+, based on which Ce-centered embedded clusters are constructed and wave function-based CASSCF/CASPT2/RASSI-SO calculations are carried out to obtain the energies of 4f1 and 5d1 levels. By comparing the calculated 4f→5d transition energies with experimental excitation spectra at low temper-atures, the lowest 4f→5d transition band peaked at 390 nm is assigned to the Ce^3+ with charge compensation by two coordinating OF' substitutions, rather than to the Ce^3+ with compensation by two VNa0 vacancies, as proposed earlier. The electronic reason for the large redshift (by -8000 cm-1) of the lowest 4f→5d transition as induced by the two nearby OF' substitutions is analyzed in terms of the changes in the centroid shift and crystal-field splitting.展开更多
The electronic structure of five conformers of 2-chloroethanol was studied by ab initio calculations at B3LYP and MP2 levels of theory with aug-cc-pVTZ basis set. The existing hydrogen bond and hyperconjugation effect...The electronic structure of five conformers of 2-chloroethanol was studied by ab initio calculations at B3LYP and MP2 levels of theory with aug-cc-pVTZ basis set. The existing hydrogen bond and hyperconjugation effects on the stability of 2-chloroethanol conformers were discussed on the base of natural bond orbital analyses. The result exhibits that hyperconjugation is the main factor to determine the stability of conformers. Such effects on the electron wavefunctions of the highest-occupied molecular orbital (HOMO) of different conformers are demonstrated with electron momentum spectroscopy, exhibiting the obviously different symmetries of the HOMO wavefunctions in momentum space.展开更多
118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic const...118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.展开更多
The energy bands,electronic structures of CuN3 and AgN3 crystallines were investigated by periodic ab initio method.The charge density projection shows that there are overlaps of isodensities between the terminal nitr...The energy bands,electronic structures of CuN3 and AgN3 crystallines were investigated by periodic ab initio method.The charge density projection shows that there are overlaps of isodensities between the terminal nitrogen and metallic ion,indicating that the metals and the azides are combined by covalent bonds.The crystal lattice energies are-781.05 and-840.83 kJ/mol for CuN3 and AgN3 respectively.These results approach the data obtained by Gray′s approximate method.The frontier crystal orbital mainly consists of the atomic orbital of azide′s terminal nitrogen.The energy gap for AgN3 is smaller than that of CuN3,and the highest occupied crystal orbitals of AgN-3 consist of both the atomic orbitals of the terminal nitrogen in azide and the silver ion,which facilitates the electron to leap from terminal nitrogen in azide to metallic ion directly.Hence silver azide is slightly more sensitive than copper azide.The elastic coefficients C11,C22 and C33 of CuN3 are predicted to be 96.52,96.86 and 154.06 GPa,C11 and C22 of AgN3 are 303.29 and 138.80 GPa.展开更多
The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is m...The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.展开更多
The electronic structures of CuS2, CuSe2 and CuTe2 with pyrite structures, within the framework the density-functional theory have been investigated. The calculated results explained the recent experimental results wh...The electronic structures of CuS2, CuSe2 and CuTe2 with pyrite structures, within the framework the density-functional theory have been investigated. The calculated results explained the recent experimental results which show that there is no clear indication of strong electron correlations in the electronic properties of Cu pyrites, due to the dominant chalcogen p character rather than d characteristic of Cu at the Fermi level.展开更多
The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-ada...The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-adaptedcluster configuration interaction method in full active space. The whole potential energy curve for the B1H state is obtained over the internuclear distance ranging from about 0.10 nm to 0,54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B^1∏ state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B^1∏ state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.展开更多
The structural, elastic and electronic properties of YAg-B2(CsCl) were investigated using the first-principles calculations. The energy band structure and the density of states were studied in detail, including part...The structural, elastic and electronic properties of YAg-B2(CsCl) were investigated using the first-principles calculations. The energy band structure and the density of states were studied in detail, including partial density of states (PDOS), in order to identify the character of each band. The structural parameters (lattice constant, bulk modulus, pressure derivative of bulk modulus) and elastic constants were also obtained. The results were consistent with the experimental data available in the literature, as well as other theoretical results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52002318 and 22103061)。
文摘Potential energy surfaces(PESs), vibrational frequencies, and infrared spectra are calculated for NF_(3)^(+) using ab initio calculations, based on UCCSD(T)/cc-p VTZ combined with vibrational configuration interaction(VCI). Based on an iterative algorithm, the surfaces(SURF) program adds automatic points to the lattice representation of the potential function, the one-dimensional and two-dimensional PESs are calculated after reaching a convergence threshold, finally the smooth image of the potential energy surface is fitted. The PESs accurately account for the interaction between the different modes, with the mode q_(6) symmetrical stretching vibrations having the greatest effect on the potential energy change of the whole system throughout the potential energy surface shift. The anharmonic frequencies are obtained when the VCI matrix is diagonalized. Fundamental frequencies, overtones, and combination bands of NF_(3)^(+) are calculated, which generate the degenerate phenomenon between their frequencies. Finally, the calculated anharmonic frequency is used to plot the infrared spectra.Modal antisymmetric stretching ν_(5) and symmetric stretching ν_(6) exhibit a phenomenon of large-intensity borrowing. This study can provide data to support the characterization in the laboratory.
基金National Key R&D Program of China under Grant Nos.2023YFA1606400 and 2022YFA1602303National Natural Science Foundation of China under Grants Nos.12335007,12035001,11921006,12347106,12147101,and 12205340+1 种基金Gansu Natural Science Foundation under Grant No.22JR5RA123U.S.Department of Energy(DOE),Office of Science,under SciDAC-5(NUCLEI collaboration)。
文摘Over the last decade,nuclear theory has made dramatic progress in few-body and ab initio many-body calculations.These great advances stem from chiral efective feld theory(xEFT),which provides an efcient expansion and consistent treatment of nuclear forces as inputs of modern many-body calculations,among which the in-medium similarity renormalization group(IMSRG)and its variants play a vital role.On the other hand,signifcant eforts have been made to provide a unifed description of the structure,decay,and reactions of the nuclei as open quantum systems.While a fully comprehensive and microscopic model has yet to be realized,substantial progress over recent decades has enhanced our understanding of open quantum systems around the dripline,which are often characterized by exotic structures and decay modes.To study these interesting phenomena,Gamow coupled-channel(GCC)method,in which the open quantum nature of few-body valence nucleons coupled to a deformed core,has been developed.This review focuses on the developments of the advanced IMSRG and GCC and their applications to nuclear structure and reactions.
文摘The experimental research programs of 1950s, to understand the adsorption of CO on W surfaces, changed to ab initio studies in 2000s. The goals were to seek improved practical applications. Most of the studies were based on density functional theory. Many studies also used programs, such as VASP (Vienna Abinitio simulation package) and CPMD. The computational procedures used plane wave approximations. This needed studies with selection of K points and cutoff energy selection to assure convergence in energy calculations. Observations and analysis of papers published from 2006 to 2022 indicate that the cutoff energies were selected arbitrarily without any needed convergence studies. By selecting a published 2006 paper, this paper has clearly showed that an arbitrary selection of cutoff energy, such as 460 eV, is not in the range of, cutoff energies that assure convergence of energy calculations, with ab initio methods and have indicated correction procedures. .
基金This work was supported by the Province Natural Science Foundation of Henan (No.082300410030), the Foundation of Henan Educational Committee (No.2011A140015), and the Doctoral Research Pund of Henan Normal University (No.525449).
文摘Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH - N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.
文摘We report an ab initio〉/I〉 study of spectral properties of Ce^3+ doped at Na+ site of the NaF crys-tal, with the charge imbalance compensated by two oxygen substitutions for fluoride (OF') in the first coordination shell or two sodium vacancies (VNa') in the second coordination sphere. Density functional theory calculations within the supercell model are first performed to op-timize the local structures of the charge-compensated Ce^3+, based on which Ce-centered embedded clusters are constructed and wave function-based CASSCF/CASPT2/RASSI-SO calculations are carried out to obtain the energies of 4f1 and 5d1 levels. By comparing the calculated 4f→5d transition energies with experimental excitation spectra at low temper-atures, the lowest 4f→5d transition band peaked at 390 nm is assigned to the Ce^3+ with charge compensation by two coordinating OF' substitutions, rather than to the Ce^3+ with compensation by two VNa0 vacancies, as proposed earlier. The electronic reason for the large redshift (by -8000 cm-1) of the lowest 4f→5d transition as induced by the two nearby OF' substitutions is analyzed in terms of the changes in the centroid shift and crystal-field splitting.
文摘The electronic structure of five conformers of 2-chloroethanol was studied by ab initio calculations at B3LYP and MP2 levels of theory with aug-cc-pVTZ basis set. The existing hydrogen bond and hyperconjugation effects on the stability of 2-chloroethanol conformers were discussed on the base of natural bond orbital analyses. The result exhibits that hyperconjugation is the main factor to determine the stability of conformers. Such effects on the electron wavefunctions of the highest-occupied molecular orbital (HOMO) of different conformers are demonstrated with electron momentum spectroscopy, exhibiting the obviously different symmetries of the HOMO wavefunctions in momentum space.
基金Projects (50971072,51131003) support by the National Natural Science Foundation of ChinaProjects (2011CB606301,2012CB825700) supported by the Ministry of Science and Technology of ChinaProject supported by the Administration of Tsinghua University
文摘118 kinds of Pt-Zr phases were established and investigated by considering various structures. Then the related physical properties, such as structural stability, lattice constants, formation enthalpies, elastic constants and bulk moduli, are obtained by ab initio calculations. Based on the calculated results of formation enthalpies, the ground-state convex hull is derived for the Pt-Zr system. The calculated physical data would provide a basis for further thermodynamic calculations and atomistic simulations. For these Pt-Zr compounds, it is found there are a positive linear correlation between the formation enthalpies and atomic volumes, and a negative linear correlation between the bulk modules and atomic volumes.
文摘The energy bands,electronic structures of CuN3 and AgN3 crystallines were investigated by periodic ab initio method.The charge density projection shows that there are overlaps of isodensities between the terminal nitrogen and metallic ion,indicating that the metals and the azides are combined by covalent bonds.The crystal lattice energies are-781.05 and-840.83 kJ/mol for CuN3 and AgN3 respectively.These results approach the data obtained by Gray′s approximate method.The frontier crystal orbital mainly consists of the atomic orbital of azide′s terminal nitrogen.The energy gap for AgN3 is smaller than that of CuN3,and the highest occupied crystal orbitals of AgN-3 consist of both the atomic orbitals of the terminal nitrogen in azide and the silver ion,which facilitates the electron to leap from terminal nitrogen in azide to metallic ion directly.Hence silver azide is slightly more sensitive than copper azide.The elastic coefficients C11,C22 and C33 of CuN3 are predicted to be 96.52,96.86 and 154.06 GPa,C11 and C22 of AgN3 are 303.29 and 138.80 GPa.
基金Supported by National Natural Science Foundation of China(No.50 0 72 0 1 5 and No.5980 1 0 0 6) and Tianjin Youth Foundation o
文摘The electronic structure of GaAs/Al xGa 1-x As superlattices has been investigated by an ab initio calculation method—the conjugate gradient (CG) approach.In order to determine that,a conventional CG scheme is modified for our superlattices:First,apart from the former scheme,for the fixed electron density n(z),the eigenvalues and eigenfunctions are calculated,and then by using those,reconstruct the new n(z).Also,for every k z,we apply the CG schemes independently.The calculated energy difference between two minibands,and Fermi energy are in good agreement with the experimental data.
基金the National Natural Science Foundation of China under grant No.10374076.
文摘The electronic structures of CuS2, CuSe2 and CuTe2 with pyrite structures, within the framework the density-functional theory have been investigated. The calculated results explained the recent experimental results which show that there is no clear indication of strong electron correlations in the electronic properties of Cu pyrites, due to the dominant chalcogen p character rather than d characteristic of Cu at the Fermi level.
基金Project supported by the National Natural Science Foundation of China (Grant No 10174019), Henan Innovation for University Prominent Research Talents (2006KYCX002) and the Natural Science Foundation of Henan Province, China (Grant No 2006140008).Acknowledgment The authors would like to heartily thank Professor Zhu Z H, of Sichuan University, for his helpful discussion about the reasonable dissociation limits at the planning stages of these calculations.
文摘The reasonable dissociation limit of the second excited singlet state B1∏ of ^7LiH molecule is obtained. The accurate dissociation energy and equilibrium geometry of the B^∏ state are calculated using a symmetry-adaptedcluster configuration interaction method in full active space. The whole potential energy curve for the B1H state is obtained over the internuclear distance ranging from about 0.10 nm to 0,54 nm, and has a least-square fit to the analytic Murrell-Sorbie function form. The vertical excitation energy is calculated from the ground state to the B^1∏ state and compared with previous theoretical results. The equilibrium internuclear distance obtained by geometry optimization is found to be quite different from that obtained by single-point energy scanning under the same calculation condition. Based on the analytic potential energy function, the harmonic frequency value of the B^1∏ state is estimated. A comparison of the theoretical calculations of dissociation energies, equilibrium interatomic distances and the analytic potential energy function with those obtained by previous theoretical results clearly shows that the present work is more comprehensive and in better agreement with experiments than previous theories, thus it is an improvement on previous theories.
基金supported by Gazi University Research Project Unit (05/2007/18)Hacettepe University (0701602005)
文摘The structural, elastic and electronic properties of YAg-B2(CsCl) were investigated using the first-principles calculations. The energy band structure and the density of states were studied in detail, including partial density of states (PDOS), in order to identify the character of each band. The structural parameters (lattice constant, bulk modulus, pressure derivative of bulk modulus) and elastic constants were also obtained. The results were consistent with the experimental data available in the literature, as well as other theoretical results.