The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valu...The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valuable for photosynthesis.However,there is little research on how to improve the efficiency of chlorophyll-based OSCs by matching chlorophyll derivatives with excellent non-fullerene acceptors to form heterojunctions.Therefore in this study we utilize a chlorophyll derivative,Ce_(6)Me_(3),as a donor material and investigate the performance of its heterojunction with acceptor materials.Through density functional theory,the photoelectric performances of acceptors,i ncluding the fullerene derivative PC_(71)BM and the terminal halogenated non-fullerene DTBCIC series,are compared in detail.It is found that DTBCIC-C1 has better planarity,light absorption,electron affinity,charge reorganization energy and charge mobility than others.Ce_(6)Me_(3) has good energy level matching and absorption spectral complementarity with the investigated acceptor molecules and also shows good electron donor properties.Furthermore,the designed Ce_(6)Me_(3)/DTBCIC interfaces have improved charge separation and reorganization rates(K_(CS)/K_(CR)) compared with the Ce_(6)Me_(3)/PC_(71)BM interface.This research provides a theoretical basis for the design of photoactive layer materials for chlorophyll-based OSCs.展开更多
Sulfate and nitrate reducing bacteria are important culprits for microbiologically influenced corrosion(MIC)using sulfate and nitrate as electron acceptors,respectively.Sulfate and nitrate hold different standard elec...Sulfate and nitrate reducing bacteria are important culprits for microbiologically influenced corrosion(MIC)using sulfate and nitrate as electron acceptors,respectively.Sulfate and nitrate hold different standard electrode potentials,which may lead to differences in corrosion,but their effects on corrosion by the same bacteria have not been reported.The corrosion of Q235 steel affected by Pseudodesulfovibrio cashew(P.cashew)in the sulfate and nitrate media under carbon starvation was studied.It was found that sulfate and nitrate did not lead to differences in corrosion under abiotic conditions.However,P.cashew promoted corrosion in both cases,and the consumption of H_(2)was the main mechanism for MIC.In addition,corrosion was more severe in the sulfate media.The higher corrosivity of P.cashew with sulfate as the electron acceptor is closely related to the higher number of sessile cells in the biofilm,higher bacterial motility,more hydrogen production pathways,and the increased gene expression of enzymes related to energy synthesis.展开更多
Low-cost photovoltaic materials are essential for realizing large-scale commercial applications of organic solar cells(OSCs).However,highly efficient OSCs based on low-cost photovoltaic materials are scarce due to a d...Low-cost photovoltaic materials are essential for realizing large-scale commercial applications of organic solar cells(OSCs).However,highly efficient OSCs based on low-cost photovoltaic materials are scarce due to a deficiency in understanding the structure-property relationship.Herein,we investigated two low-cost terthiophene-based electron acceptors,namely,3TC8 and 3TEH,with 3,4-bis(octan-3-yloxy)thiophene,differing only in the alkylated thiophene-bridges.Both acceptors exhibit low optical gaps(∼1.43 eV)and possess deep highest occupied molecular orbital(HOMO)levels(∼−5.8 eV).Notably,the single-crystal structure of 3TEH demonstrates highly planar conjugated backbone and strongπ-πstacking between intermolecular terminal groups,attributed to the presence of the bulky alkylated noncovalently conformational locks.Upon utilizing both acceptors to fabricate OSCs,the 3TC8-based device exhibited a power conversion efficiency(PCE)of 11.1%,while the 3TEH-based OSC demonstrated an excellent PCE of 14.4%.This PCE is the highest among OSCs based on terthiophene-containing electron acceptors.These results offer a new strategy for designing low-cost electron acceptors for highly efficient OSCs.展开更多
Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increa...Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increasing optical absorption,refining energy levels,and improving molecular packing in organic semiconductors.Herein,a series of NFAs(Pz IC-4H,Pz IC-4F,Pz IC-4Cl,Pz IC-2Br)with phenazine as the central core and with/without halogen-substituted(dicyanomethylidene)-indan-1-one(IC)as the electron-accepting end group were synthesized,and the effect of end group matched phenazine central unit on the photovoltaic performance was systematically studied.Synergetic photophysical and morphological analyses revealed that the PM6:Pz IC-4F blend involves efficient exciton dissociation,higher charge collection and transfer rates,better crystallinity,and optimal phase separation.Therefore,OSCs based on PM6:Pz IC-4F as the active layer exhibited a PCE of 16.48%with an open circuit voltage(Voc)and energy loss of 0.880 V and 0.53 e V,respectively.Accordingly,this work demonstrated a promising approach by designing phenazine-based NFAs for achieving high-performance OSCs.展开更多
The emergence of Y6-type nonfullerene acceptors has greatly enhanced the power conversion efficiency(PCE)of organic solar cells(OSCs).However,which structural feature is responsible for the excellent photovoltaic perf...The emergence of Y6-type nonfullerene acceptors has greatly enhanced the power conversion efficiency(PCE)of organic solar cells(OSCs).However,which structural feature is responsible for the excellent photovoltaic performance is still under debate.In this study,two Y6-like acceptors BDOTP-1 and BDOTP-2 were designed.Different from previous Y6-type acceptors featuring an A–D–Aʹ–D–A structure,BDOTP-1,and BDOTP-2 have no electron-deficient Aʹfragment in the core unit.Instead,there is an electron-rich dibenzodioxine fragment in the core.Although this modification leads to a marked change in the molecular dipole moment,electrostatic potential,frontier orbitals,and energy levels,BDOTP acceptors retain similar three-dimensional packing capability as Y6-type acceptors due to the similar banana-shaped molecular configuration.BDOTP acceptors show good performance in OSCs.High PCEs of up to 18.51%(certified 17.9%)are achieved.This study suggests that the banana-shaped configuration instead of the A–D–Aʹ–D–A structure is likely to be the determining factor in realizing high photovoltaic performance.展开更多
The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethyli...The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethylidene)indan-1-one(IC)end group or its derivatives,leading to low molecular weight,and thus reduce active layer mechanical properties.Herein,a series of newly designed chlorinated PSMAs originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight,favorable intermolecular interaction,and improved physicochemical properties.Compared with regioregular PY2Se-Cl-o and PY2Se-Cl-m,regiorandom PY2Se-Cl-ran has a similar absorption profile,moderate lowest unoccupied molecular orbital level,and favorable intermolecular packing and crystallization properties.Moreover,the binary PM6:PY2Se-Cl-ran blend achieves better ductility with a crack-onset strain of 17.5% and improved power conversion efficiency(PCE)of 16.23% in all-polymer solar cells(all-PSCs)due to the higher molecular weight of PY2Se-Cl-ran and optimized blend morphology,while the ternary PM6:J71:PY2Se-Cl-ran blend offers an impressive PCE approaching 17% and excellent device stability,which are all crucial for potential practical applications of all-PSCs in wearable electronics.To date,the efficiency of 16.86% is the highest value reported for the regiorandom PSMAs-based all-PSCs and is also one of the best values reported for the all-PSCs.Our work provides a new perspective to develop efficient all-PSCs,with all high active layer ductility,impressive PCE,and excellent device stability,towards practical applications.展开更多
Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE dr...Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.展开更多
All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)in...All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs.展开更多
Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and sm...Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and small molecule acceptors(SMAs)have achieved remarkable success with the power conversion efficiencies(PCEs)over 18%[21−26].展开更多
A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109...A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109(8), b = 16.596(8), c = 7.983(3)A, β = 91.590(15)°, V = 3193(2)A^3, Z = 4, C33H18I2N6O3Pb, Mr = 1007.53, Dc = 2.096 g/cm^3, F(000) = 1880, μ(MoKα) = 7.262 mm^-1, the final R = 0.0352 and wR = 0.0951 for 3198 observed reflections with I 〉 2σ(I). In the [(dafone)PbI2]n chain, the Pb center adopts a distorted octahedral coordination geometry and shares an edge to give a one-dimensional polymer. The 3-D arrangement of 1 constructs from H-bonds among dafone molecules and π-π stacking interactions among dissociative dafone molecules. These weak interactions contribute to the stability of the title compound. DFT calculation was carried out to reveal its electronic structure.展开更多
Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy...Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy to improve the performance of polymer solar cells.The asymmetric design of the molecule is very beneficial for exciton dissociation and charge transport and will also fine-tune the molecular energy level to adjust the open-circuit voltage(Voc)further.The influence on the absorption range and absorption intensity will cause the short-circuit current density(Jsc)to change,resulting in higher device performance.The effect on molecular aggregation and molecular stacking of asymmetric structures can directly change the microscopic morphology,phase separation size,and the active layer's crystallinity.Very recently,thanks to the ingenious design of active layer materials and the optimization of devices,asymmetric non-fullerene polymer solar cells(A-NF-PSCs)have achieved remarkable development.In this review,we have summarized the latest developments in asymmetric small molecule acceptors(A-NF-SMAs)with the acceptor-donor-acceptor(A-D-A)and/or acceptor-donor-acceptor-donor-acceptor(A-D-A-D-A)structures,and the advantages of asymmetric small molecules are explored from the aspects of charge transport,molecular energy level and active layer accumulation morphology.展开更多
Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the i...Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the intrinsic shortcomings, such as weak absorption in the visible range, difficulty in modification and high cost, which limit the performance of the device and the large-scale application of this type of acceptors. In recent years, non-fullerene electron acceptor material has attracted the attention of scientists due to the advantages of adjustable energy level, wide absorption, simple synthesis, low processing cost and good solubility. Researchers can use the rich chemical means to design and synthesize organic small molecules and their oligomers with specific aggregation morphology and excellent optoelectronic prop- erties. Great advances in the field of synthesis, device engineering, and device physics of non-fullerene acceptors have been achieved in the last few years. At present, non-fullerene small molecules based photovoltaic devices achieve the highest efficiency more than 13% and the efficiency gap between fullerenetype and non-fullerene-type photovoltaic devices is gradually narrowing. In this review, we explore recent progress of non-fullerene small molecule electron acceptors that have been developed and led to highefficiency photovoltaic devices and put forward the prospect of development in the future.展开更多
Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular elec...Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular electron acceptors with 2-dimensional(2 D) configuration and conjugation are seldom reported.Herein, we designed and synthesized a series of novel 2 D electron acceptors for efficient NF-PSCs. With rational optimization on the conjugated moieties in both vertical and horizontal direction, these 2 D electron acceptors showed appealing properties, such as good planarity, full-spectrum absorption, high absorption extinction coefficient, and proper blend morphology with donor polymer. A high PCE of 9.76%was achieved for photovoltaic devices with PBDB-T as the donor and these 2 D electron acceptors. It was also found the charge transfer between the conjugated moieties in two directions of these 2 D molecules contributes to the utilization of absorbed photos, resulting in an exceptional EQE of 87% at 730 nm. This work presents rational design guidelines of 2 D electron acceptors, which showed great promise to achieve high-performance non-fullerene polymer solar cells.展开更多
The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics.Ultranarrow-bandgap materials are in urgent demand for fabricating hig...The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics.Ultranarrow-bandgap materials are in urgent demand for fabricating high-performance organic photovoltaic(OPV)cells and highly sensitive near-infrared organic photodetectors(OPDs).By combining alkoxy modification and an asymmetric strategy,three narrowbandgap electronic acceptors(BTP-4F,DO-4F,and QO-4F)were synthesized with finely tuned molecular electrostatic potential(ESP)distributions.Through the careful modulation of electronic configurations,the optical absorption onsets of DO-4F and QO-4F exceeded 1μm.The experimental and theoretical results suggest that the small ESP of QO-4F is beneficial for achieving a low nonradiative voltage loss,while the large ESP of BTP-4F can help obtain high exciton dissociation efficiency.By contrast,the asymmetric acceptor DO-4F with a moderate ESP possesses balanced voltage loss and exciton dissociation,yielding the best power conversion efficiency of 13.6%in the OPV cells.OPDs were also fabricated based on the combination of PBDB-T:DO-4F,and the as-fabricated device outputs a high shot-noise-limited specific detectivity of 3.05×10^(13) Jones at 850 nm,which is a very good result for near-infrared OPDs.This work is anticipated to provide a rational way of designing high-performance ultranarrow-bandgap organic semiconductors by modulating the molecular ESP.展开更多
In recent years,significant progress has been witnessed in organic solar cells(OSCs),which is mainly attributed to the new active layer materials design,especially fused ring acceptors.However,the majority of fused-ri...In recent years,significant progress has been witnessed in organic solar cells(OSCs),which is mainly attributed to the new active layer materials design,especially fused ring acceptors.However,the majority of fused-ring acceptors suffer from complicated synthetic procedures and unsatisfactory reaction yields and thus high preparation cost.It is difficult to reconcile with the necessity for OPVs to demonstrate the low cost advantage compared with other photovoltaic technologies such as silicon or perovskite solar cells,thus significantly limiting the future application of OSCs.Therefore,it is necessary to develop high efficiency but low cost acceptor materials,i.e.non-fused ring electron acceptors(NFREAs).In this review,the recent development of NFREAs from the viewpoint of materials design is discussed.In the first and second sections,NFREAs with different central cores are reviewed.Then,the progress of fully non-fused NFREAs is summarized.Finally,an outlook on the remaining challenges to the field is provided.展开更多
Nonfullerene organic solar cells(NF-OSCs) have become a research hotspot, and the device efficiency has been constantly updated[1-14]. The efficiency of binary and ternary solar cells has exceeded 18%[15-17] and 19%[1...Nonfullerene organic solar cells(NF-OSCs) have become a research hotspot, and the device efficiency has been constantly updated[1-14]. The efficiency of binary and ternary solar cells has exceeded 18%[15-17] and 19%[18], respectively. In the early study of OSCs, the development of organic acceptors lagged behind that of organic donors.展开更多
During last decade,organic photovoltaics experienced an exciting renaissance[1-5],mainly benefiting from the development of non-fullerene acceptors(NFAs),which boosted the power conversion efficiency to-20%[6,7].Along...During last decade,organic photovoltaics experienced an exciting renaissance[1-5],mainly benefiting from the development of non-fullerene acceptors(NFAs),which boosted the power conversion efficiency to-20%[6,7].Along with the unprecedented success of organic solar cells,non-fullerene acceptors also find other optoelectronic applications.In particular,high-performance organic photodetectors(OPDs)[8,9]based on non-fullerene acceptors have been reported.展开更多
Organic solar cells(OSCs)processed without halogenated solvents and complex treatments are essential for future commercialization.Herein,we report three novel small molecule acceptors(NFAs)consisting of a Y6-like core...Organic solar cells(OSCs)processed without halogenated solvents and complex treatments are essential for future commercialization.Herein,we report three novel small molecule acceptors(NFAs)consisting of a Y6-like core but withπ-extended naphthalene with progressively more chlorinated end-capping groups and a longer branched chain on the Nitrogen atom.These NFAs exhibit good solubilities in nonchlorinated organic solvents,broad optical absorptions,closeπ-πstacking distances(3.63–3.84A),and high electron mobilities(~10^(-3)cm^(2)V^(-1)s^(-1)).The o-xylene processed and as-cast binary devices using PM6 as the donor polymer exhibit a PCE increasing upon progressive chlorination of the naphthalene end-capping group from 8.93%for YN to 14.38%for YN-Cl to 15.00%for YN-2Cl.Furthermore similarly processed ternary OSCs were fabricated by employing YN-Cl and YN-2Cl as the third component of PM6:CH1007 blends(PCE=15.75%).Compared to all binary devices,the ternary PM6:CH1007:YN-Cl(1:1:0.2)and PM6:CH1007:YN-2Cl(1:1:0.2)cells exhibit significantly improved PCEs of 16.49%and15.88%,respectively,which are among the highest values reported to date for non-halogenated solvent processed OSCs without using any additives and blend post-deposition treatments.展开更多
In order lo promote the integration of family planning with sustainahle development,relevant departnents and agencies of the Sichuan Provincial Govemment have jointly launched a campaign to help and support the housch...In order lo promote the integration of family planning with sustainahle development,relevant departnents and agencies of the Sichuan Provincial Govemment have jointly launched a campaign to help and support the houscholds practising family planning to be the first t0 become well-of.These familics will become lcaders in practising family planning,superior in economic slatus and content in daily life.展开更多
The phenomenon of mutual compensation of radiation donors and acceptors is discovered in IrtAs-InP solid solutions. This phenomenon is a result of opposite directed radiation processes, taking place in the irradiated ...The phenomenon of mutual compensation of radiation donors and acceptors is discovered in IrtAs-InP solid solutions. This phenomenon is a result of opposite directed radiation processes, taking place in the irradiated InAs-InP solid solutions. The radiation creates donor type defects in the sublattice of InAs and electrons concentration increases. The contrary process occurs in the sublattice of InP. Radiation originates acceptor type defects and the carrier concentration decreases. The noted effect is going on in the all alloy composition. Exact mutual compensation of radiation donors and acceptors is achieved by selecting of the alloys definite composition. As a result, the main parameter of semiconductors-electrons concentration remains constant even under the hard radiation with fluences of Ф = 2 × 10^18 fast neutrons/cm^2. So there has been created radiation-resistant material.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074059, 11974152, and 11404055)Heilongjiang Postdoctoral Fund (Grant No. LBH-Q21061)。
文摘The selection of photoactive layer materials for organic solar cells(OSCs) is essential for the photoelectric conversion process.It is well known that chlorophyll is an abundant pigment in nature and is extremely valuable for photosynthesis.However,there is little research on how to improve the efficiency of chlorophyll-based OSCs by matching chlorophyll derivatives with excellent non-fullerene acceptors to form heterojunctions.Therefore in this study we utilize a chlorophyll derivative,Ce_(6)Me_(3),as a donor material and investigate the performance of its heterojunction with acceptor materials.Through density functional theory,the photoelectric performances of acceptors,i ncluding the fullerene derivative PC_(71)BM and the terminal halogenated non-fullerene DTBCIC series,are compared in detail.It is found that DTBCIC-C1 has better planarity,light absorption,electron affinity,charge reorganization energy and charge mobility than others.Ce_(6)Me_(3) has good energy level matching and absorption spectral complementarity with the investigated acceptor molecules and also shows good electron donor properties.Furthermore,the designed Ce_(6)Me_(3)/DTBCIC interfaces have improved charge separation and reorganization rates(K_(CS)/K_(CR)) compared with the Ce_(6)Me_(3)/PC_(71)BM interface.This research provides a theoretical basis for the design of photoactive layer materials for chlorophyll-based OSCs.
基金Project(2022LSL050102)supported by the Laoshan Laboratory,China。
文摘Sulfate and nitrate reducing bacteria are important culprits for microbiologically influenced corrosion(MIC)using sulfate and nitrate as electron acceptors,respectively.Sulfate and nitrate hold different standard electrode potentials,which may lead to differences in corrosion,but their effects on corrosion by the same bacteria have not been reported.The corrosion of Q235 steel affected by Pseudodesulfovibrio cashew(P.cashew)in the sulfate and nitrate media under carbon starvation was studied.It was found that sulfate and nitrate did not lead to differences in corrosion under abiotic conditions.However,P.cashew promoted corrosion in both cases,and the consumption of H_(2)was the main mechanism for MIC.In addition,corrosion was more severe in the sulfate media.The higher corrosivity of P.cashew with sulfate as the electron acceptor is closely related to the higher number of sessile cells in the biofilm,higher bacterial motility,more hydrogen production pathways,and the increased gene expression of enzymes related to energy synthesis.
基金supported by the Beijing Natural Science Foundation of China(Z230019,2212005)the National Natural Science Foundation of China(NSFC 22173062,21833005,22090022 and 22275125).
文摘Low-cost photovoltaic materials are essential for realizing large-scale commercial applications of organic solar cells(OSCs).However,highly efficient OSCs based on low-cost photovoltaic materials are scarce due to a deficiency in understanding the structure-property relationship.Herein,we investigated two low-cost terthiophene-based electron acceptors,namely,3TC8 and 3TEH,with 3,4-bis(octan-3-yloxy)thiophene,differing only in the alkylated thiophene-bridges.Both acceptors exhibit low optical gaps(∼1.43 eV)and possess deep highest occupied molecular orbital(HOMO)levels(∼−5.8 eV).Notably,the single-crystal structure of 3TEH demonstrates highly planar conjugated backbone and strongπ-πstacking between intermolecular terminal groups,attributed to the presence of the bulky alkylated noncovalently conformational locks.Upon utilizing both acceptors to fabricate OSCs,the 3TC8-based device exhibited a power conversion efficiency(PCE)of 11.1%,while the 3TEH-based OSC demonstrated an excellent PCE of 14.4%.This PCE is the highest among OSCs based on terthiophene-containing electron acceptors.These results offer a new strategy for designing low-cost electron acceptors for highly efficient OSCs.
基金financially supported by the National Natural Science Foundation of China (22279152,U21A20331)the National Science Fund for Distinguished Young Scholars (21925506)+1 种基金the Ningbo key scientific and technological project (2022Z117)the Ningbo Natural Science Foundation (2021J192)。
文摘Phenazine-based non-fullerene acceptors(NFAs)have demonstrated great potential in improving the power conversion efficiency(PCE)of organic solar cells(OSCs).Halogenation is known to be an effective strategy for increasing optical absorption,refining energy levels,and improving molecular packing in organic semiconductors.Herein,a series of NFAs(Pz IC-4H,Pz IC-4F,Pz IC-4Cl,Pz IC-2Br)with phenazine as the central core and with/without halogen-substituted(dicyanomethylidene)-indan-1-one(IC)as the electron-accepting end group were synthesized,and the effect of end group matched phenazine central unit on the photovoltaic performance was systematically studied.Synergetic photophysical and morphological analyses revealed that the PM6:Pz IC-4F blend involves efficient exciton dissociation,higher charge collection and transfer rates,better crystallinity,and optimal phase separation.Therefore,OSCs based on PM6:Pz IC-4F as the active layer exhibited a PCE of 16.48%with an open circuit voltage(Voc)and energy loss of 0.880 V and 0.53 e V,respectively.Accordingly,this work demonstrated a promising approach by designing phenazine-based NFAs for achieving high-performance OSCs.
基金the open research fund of the Songshan Lake Materials Laboratory(2021SLABFK02)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51922032 and 21961160720).
文摘The emergence of Y6-type nonfullerene acceptors has greatly enhanced the power conversion efficiency(PCE)of organic solar cells(OSCs).However,which structural feature is responsible for the excellent photovoltaic performance is still under debate.In this study,two Y6-like acceptors BDOTP-1 and BDOTP-2 were designed.Different from previous Y6-type acceptors featuring an A–D–Aʹ–D–A structure,BDOTP-1,and BDOTP-2 have no electron-deficient Aʹfragment in the core unit.Instead,there is an electron-rich dibenzodioxine fragment in the core.Although this modification leads to a marked change in the molecular dipole moment,electrostatic potential,frontier orbitals,and energy levels,BDOTP acceptors retain similar three-dimensional packing capability as Y6-type acceptors due to the similar banana-shaped molecular configuration.BDOTP acceptors show good performance in OSCs.High PCEs of up to 18.51%(certified 17.9%)are achieved.This study suggests that the banana-shaped configuration instead of the A–D–Aʹ–D–A structure is likely to be the determining factor in realizing high photovoltaic performance.
基金National Natural Science Foundation of China,Grant/Award Numbers:21704082,21875182,22005121Key Scientific and Technological Innovation Team Project of Shaanxi Province,Grant/Award Number:2020TD‐002111 project 2.0,Grant/Award Number:BP2018008。
文摘The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethylidene)indan-1-one(IC)end group or its derivatives,leading to low molecular weight,and thus reduce active layer mechanical properties.Herein,a series of newly designed chlorinated PSMAs originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight,favorable intermolecular interaction,and improved physicochemical properties.Compared with regioregular PY2Se-Cl-o and PY2Se-Cl-m,regiorandom PY2Se-Cl-ran has a similar absorption profile,moderate lowest unoccupied molecular orbital level,and favorable intermolecular packing and crystallization properties.Moreover,the binary PM6:PY2Se-Cl-ran blend achieves better ductility with a crack-onset strain of 17.5% and improved power conversion efficiency(PCE)of 16.23% in all-polymer solar cells(all-PSCs)due to the higher molecular weight of PY2Se-Cl-ran and optimized blend morphology,while the ternary PM6:J71:PY2Se-Cl-ran blend offers an impressive PCE approaching 17% and excellent device stability,which are all crucial for potential practical applications of all-PSCs in wearable electronics.To date,the efficiency of 16.86% is the highest value reported for the regiorandom PSMAs-based all-PSCs and is also one of the best values reported for the all-PSCs.Our work provides a new perspective to develop efficient all-PSCs,with all high active layer ductility,impressive PCE,and excellent device stability,towards practical applications.
基金the support from the NSFC (22209131, 22005121, 21875182, and 52173023)National Key Research and Development Program of China (2022YFE0132400)+4 种基金Key Scientific and Technological Innovation Team Project of Shaanxi Province (2020TD-002)111 project 2.0 (BP0618008)Open Fund of Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications (Changzhou University, GDRGCS2022002)Open Fund of Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education (Jiangxi Normal University, KFSEMC-202201)acquired at beamlines 7.3.3 and 11.0.1.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231
文摘Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.
基金the Swedish Research Council (2016-06146,2019-02345)Swedish Research Council (grant no.2020-05223)+7 种基金the Swedish Research Council Formas,the Swedish Energy Agency (52473-1)the Wallenberg Foundation (2017.0186 and 2016.0059) for financial supportsupported by the National Research Foundation of Korea (NRF-2017M3A7B8065584 and 2020R1A4A1018516)Support from the National Natural Science Foundation of China (61774077)the Key Projects of Joint Fund of Basic and Applied Basic Research Fund of Guangdong Province (2019B1515120073)the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology (No.2020B1212030010)Support from Sino-Danish Center for Education and ResearchSwedish Energy Agency (grant no.45420-1)
文摘All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs.
基金the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province(2021B1515020027)the National Natural Science Foundation of China(21801124 and 21774055)+2 种基金Shenzhen Science and Technology Innovation Commission(JCYJ20180504165709042)the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720)for financial support.
文摘Bulk-heterojunction polymer solar cells(PSCs)as a clean and renewable energy resource have attracted great attention from both academia and industry[1−20].Recently non-fullerene PSCs based on polymer donors(PDs)and small molecule acceptors(SMAs)have achieved remarkable success with the power conversion efficiencies(PCEs)over 18%[21−26].
基金Supported by the Natural Science Foundation of Fujian Province (E0710008)Innovation Fund for Young Scientist of Fujian Province (2007F3049)Fund of Education Committee of Fujian Province (JA07018)
文摘A new 3-D hybrid framework {[(dafone)PbI2](dafone)2}n 1 (dafone = 4,5-diazafluoren-9-one) has been prepared and structurally determined. 1 crystallizes in the monoclinic system, space group C2/c with a = 24.109(8), b = 16.596(8), c = 7.983(3)A, β = 91.590(15)°, V = 3193(2)A^3, Z = 4, C33H18I2N6O3Pb, Mr = 1007.53, Dc = 2.096 g/cm^3, F(000) = 1880, μ(MoKα) = 7.262 mm^-1, the final R = 0.0352 and wR = 0.0951 for 3198 observed reflections with I 〉 2σ(I). In the [(dafone)PbI2]n chain, the Pb center adopts a distorted octahedral coordination geometry and shares an edge to give a one-dimensional polymer. The 3-D arrangement of 1 constructs from H-bonds among dafone molecules and π-π stacking interactions among dissociative dafone molecules. These weak interactions contribute to the stability of the title compound. DFT calculation was carried out to reveal its electronic structure.
基金the National Key R&D Program of"Strategic Advanced Electronic Materials"(No.2016YFB0401100)the National Natural Science Foundation of China(Grant No.61574077)+1 种基金Major Program of Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.19KJA460005)Natural Science Foundation of Jiangsu Province(BK20170961).
文摘Recently,polymer solar cells developed very fast due to the application of non-fullerence acceptors.Substituting asymmetric small molecules for symmetric small molecule acceptors in the photoactive layer is a strategy to improve the performance of polymer solar cells.The asymmetric design of the molecule is very beneficial for exciton dissociation and charge transport and will also fine-tune the molecular energy level to adjust the open-circuit voltage(Voc)further.The influence on the absorption range and absorption intensity will cause the short-circuit current density(Jsc)to change,resulting in higher device performance.The effect on molecular aggregation and molecular stacking of asymmetric structures can directly change the microscopic morphology,phase separation size,and the active layer's crystallinity.Very recently,thanks to the ingenious design of active layer materials and the optimization of devices,asymmetric non-fullerene polymer solar cells(A-NF-PSCs)have achieved remarkable development.In this review,we have summarized the latest developments in asymmetric small molecule acceptors(A-NF-SMAs)with the acceptor-donor-acceptor(A-D-A)and/or acceptor-donor-acceptor-donor-acceptor(A-D-A-D-A)structures,and the advantages of asymmetric small molecules are explored from the aspects of charge transport,molecular energy level and active layer accumulation morphology.
基金the financial support by the National Natural Science Foundation of China(51303099)the Natural Science Basic Research Plan in Shaanxi Province of China(2017JM5058)the Funded Projects for the Academic Leaders and Academic Backbones,Shaanxi Normal University(16QNGG008)
文摘Fullerenes and their derivatives are important types of electron acceptor materials and play a vital role in organic solar cell devices. However, the fullerene acceptor material has some difficulties to overcome the intrinsic shortcomings, such as weak absorption in the visible range, difficulty in modification and high cost, which limit the performance of the device and the large-scale application of this type of acceptors. In recent years, non-fullerene electron acceptor material has attracted the attention of scientists due to the advantages of adjustable energy level, wide absorption, simple synthesis, low processing cost and good solubility. Researchers can use the rich chemical means to design and synthesize organic small molecules and their oligomers with specific aggregation morphology and excellent optoelectronic prop- erties. Great advances in the field of synthesis, device engineering, and device physics of non-fullerene acceptors have been achieved in the last few years. At present, non-fullerene small molecules based photovoltaic devices achieve the highest efficiency more than 13% and the efficiency gap between fullerenetype and non-fullerene-type photovoltaic devices is gradually narrowing. In this review, we explore recent progress of non-fullerene small molecule electron acceptors that have been developed and led to highefficiency photovoltaic devices and put forward the prospect of development in the future.
基金financially supported by the National Key Research and Development Program of China (No. 2019YFA0705900) funded by MOSTthe Basic and Applied Basic Research Major Program of Guangdong Province (No. 2019B030302007)the National Natural Science Foundation of China (No. 51521002)。
文摘Non-fullerene polymer solar cells(NF-PSCs) have gained wide attention recently. Molecular design of non-fullerene electron acceptors effectively promotes the photovoltaic performance of NF-PSCs. However,molecular electron acceptors with 2-dimensional(2 D) configuration and conjugation are seldom reported.Herein, we designed and synthesized a series of novel 2 D electron acceptors for efficient NF-PSCs. With rational optimization on the conjugated moieties in both vertical and horizontal direction, these 2 D electron acceptors showed appealing properties, such as good planarity, full-spectrum absorption, high absorption extinction coefficient, and proper blend morphology with donor polymer. A high PCE of 9.76%was achieved for photovoltaic devices with PBDB-T as the donor and these 2 D electron acceptors. It was also found the charge transfer between the conjugated moieties in two directions of these 2 D molecules contributes to the utilization of absorbed photos, resulting in an exceptional EQE of 87% at 730 nm. This work presents rational design guidelines of 2 D electron acceptors, which showed great promise to achieve high-performance non-fullerene polymer solar cells.
基金the support from the National Natural Science Foundation of China(NSFC,21835006)the financial support from the NSFC(22075301 and 22122905)+2 种基金the Youth Innovation Promotion Association CAS(2018043)the Key Research Program of the Chinese Academy of Sciences,Grant NO.XDPB13-3supported by the Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-201903)。
文摘The fabrication of multifunctional electronic devices based on the intriguing natures of organic semiconductors is crucial for organic electronics.Ultranarrow-bandgap materials are in urgent demand for fabricating high-performance organic photovoltaic(OPV)cells and highly sensitive near-infrared organic photodetectors(OPDs).By combining alkoxy modification and an asymmetric strategy,three narrowbandgap electronic acceptors(BTP-4F,DO-4F,and QO-4F)were synthesized with finely tuned molecular electrostatic potential(ESP)distributions.Through the careful modulation of electronic configurations,the optical absorption onsets of DO-4F and QO-4F exceeded 1μm.The experimental and theoretical results suggest that the small ESP of QO-4F is beneficial for achieving a low nonradiative voltage loss,while the large ESP of BTP-4F can help obtain high exciton dissociation efficiency.By contrast,the asymmetric acceptor DO-4F with a moderate ESP possesses balanced voltage loss and exciton dissociation,yielding the best power conversion efficiency of 13.6%in the OPV cells.OPDs were also fabricated based on the combination of PBDB-T:DO-4F,and the as-fabricated device outputs a high shot-noise-limited specific detectivity of 3.05×10^(13) Jones at 850 nm,which is a very good result for near-infrared OPDs.This work is anticipated to provide a rational way of designing high-performance ultranarrow-bandgap organic semiconductors by modulating the molecular ESP.
基金the financial support from the Hong Kong Scholar Program(XJ2021-038)the Natural Science Foundation Research Project of Shaanxi Province(Programs No.2021JQ-595)+2 种基金the National Natural Science Foundation of China(52025033,21935007)Tianjin City(20JCZDJC00740)the Postgraduate Innovation and Practical Ability Training Program of Xi'an Shiyou University(YCS21212144).
文摘In recent years,significant progress has been witnessed in organic solar cells(OSCs),which is mainly attributed to the new active layer materials design,especially fused ring acceptors.However,the majority of fused-ring acceptors suffer from complicated synthetic procedures and unsatisfactory reaction yields and thus high preparation cost.It is difficult to reconcile with the necessity for OPVs to demonstrate the low cost advantage compared with other photovoltaic technologies such as silicon or perovskite solar cells,thus significantly limiting the future application of OSCs.Therefore,it is necessary to develop high efficiency but low cost acceptor materials,i.e.non-fused ring electron acceptors(NFREAs).In this review,the recent development of NFREAs from the viewpoint of materials design is discussed.In the first and second sections,NFREAs with different central cores are reviewed.Then,the progress of fully non-fused NFREAs is summarized.Finally,an outlook on the remaining challenges to the field is provided.
基金supported by the Scientific Research Foundation of Education Department of Jilin Province(JJKH20220827KJ)Natural Science Foundation of Changchun Normal University+2 种基金Scientific Startup Fund of Changchun Normal Universitythe National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032,and 21961160720)for financial support。
文摘Nonfullerene organic solar cells(NF-OSCs) have become a research hotspot, and the device efficiency has been constantly updated[1-14]. The efficiency of binary and ternary solar cells has exceeded 18%[15-17] and 19%[18], respectively. In the early study of OSCs, the development of organic acceptors lagged behind that of organic donors.
基金the financially supports from the National Natural Science Foundation of China (61875154)the National Natural Science Foundation of China (51922032, 21961160720)+4 种基金Wuhan Science and Technology Bureau (2022010801010108)the open research fund of Hubei Luojia Laboratory (220100042)the National Key Research and Development Program of China (2020YFB2008800)the open research fund of Songshan Lake Materials Laboratory (2021SLABFK02)the National Key Research and Development Program of China (2017YFA0206600).
文摘During last decade,organic photovoltaics experienced an exciting renaissance[1-5],mainly benefiting from the development of non-fullerene acceptors(NFAs),which boosted the power conversion efficiency to-20%[6,7].Along with the unprecedented success of organic solar cells,non-fullerene acceptors also find other optoelectronic applications.In particular,high-performance organic photodetectors(OPDs)[8,9]based on non-fullerene acceptors have been reported.
基金supported by the National Natural Science Foundation of China(61804073)the Center for Light Energy Activated Redox Processes(LEAP),an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,under award DE-SC0001059+3 种基金the Mat CI Facility which receives support from the National Science Foundation MRSEC Program(NSF DMR-1720139)of the Materials Research Center at Northwestern Universitysupport from the US Office of Naval Research Contract N00014-20-1-2116the U.S.Department of Energy under contract No.DE-AC02-05CH11231at beamline 8-ID-E of the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC0206CH11357。
文摘Organic solar cells(OSCs)processed without halogenated solvents and complex treatments are essential for future commercialization.Herein,we report three novel small molecule acceptors(NFAs)consisting of a Y6-like core but withπ-extended naphthalene with progressively more chlorinated end-capping groups and a longer branched chain on the Nitrogen atom.These NFAs exhibit good solubilities in nonchlorinated organic solvents,broad optical absorptions,closeπ-πstacking distances(3.63–3.84A),and high electron mobilities(~10^(-3)cm^(2)V^(-1)s^(-1)).The o-xylene processed and as-cast binary devices using PM6 as the donor polymer exhibit a PCE increasing upon progressive chlorination of the naphthalene end-capping group from 8.93%for YN to 14.38%for YN-Cl to 15.00%for YN-2Cl.Furthermore similarly processed ternary OSCs were fabricated by employing YN-Cl and YN-2Cl as the third component of PM6:CH1007 blends(PCE=15.75%).Compared to all binary devices,the ternary PM6:CH1007:YN-Cl(1:1:0.2)and PM6:CH1007:YN-2Cl(1:1:0.2)cells exhibit significantly improved PCEs of 16.49%and15.88%,respectively,which are among the highest values reported to date for non-halogenated solvent processed OSCs without using any additives and blend post-deposition treatments.
文摘In order lo promote the integration of family planning with sustainahle development,relevant departnents and agencies of the Sichuan Provincial Govemment have jointly launched a campaign to help and support the houscholds practising family planning to be the first t0 become well-of.These familics will become lcaders in practising family planning,superior in economic slatus and content in daily life.
文摘The phenomenon of mutual compensation of radiation donors and acceptors is discovered in IrtAs-InP solid solutions. This phenomenon is a result of opposite directed radiation processes, taking place in the irradiated InAs-InP solid solutions. The radiation creates donor type defects in the sublattice of InAs and electrons concentration increases. The contrary process occurs in the sublattice of InP. Radiation originates acceptor type defects and the carrier concentration decreases. The noted effect is going on in the all alloy composition. Exact mutual compensation of radiation donors and acceptors is achieved by selecting of the alloys definite composition. As a result, the main parameter of semiconductors-electrons concentration remains constant even under the hard radiation with fluences of Ф = 2 × 10^18 fast neutrons/cm^2. So there has been created radiation-resistant material.