A multiple secret sharing scheme can share a group of secrets in each sharing session, which is very useful especially in sharing large secrets. However, most of the existing multiple secret sharing schemes are (t, n...A multiple secret sharing scheme can share a group of secrets in each sharing session, which is very useful especially in sharing large secrets. However, most of the existing multiple secret sharing schemes are (t, n) threshold schemes, so they are fit for only threshold applications and unfit for the applications of general access structures. Due to the fact that a (t, n) threshold scheme could only handle a small fraction of the secret sharing idea, a novel multi-secret sharing scheme is proposed, which is designed based on general access structures. The security of this scheme is the same as that of Shamir's threshold secret sharing scheme. Compared with the existing multiple secret sharing schemes, the proposed scheme can provide greater capabilities for many applications because it is able to deal with applications of general access structures.展开更多
A group oriented cryptosystem for the vector space access structure was proposed. This cryptosystem adopts self-certified public keys. It allows the participants of an authorized subset to cooperatively access an encr...A group oriented cryptosystem for the vector space access structure was proposed. This cryptosystem adopts self-certified public keys. It allows the participants of an authorized subset to cooperatively access an encrypted message. All data delivered in the cryptosystem are public. Therefore it does not need a partial decrypting results combiner and any secure communication channel. The security of the group oriented cryptosystem is based on the intractability of the discrete log problem and difficulty of factoring large integers. The suspected attacks can not break it.展开更多
In this paper we study linear secret sharing schemes by monotone span programs, according to the relation between realizing access structures by linear secret sharing schemes and computing monotone Boolean functions b...In this paper we study linear secret sharing schemes by monotone span programs, according to the relation between realizing access structures by linear secret sharing schemes and computing monotone Boolean functions by monotone span programs. We construct some linear secret sharing schemes. Furthermore, we study the rearrangements of access structures that is very important in practice.展开更多
The information rate is an important metric of the performance of a secret-sharing scheme. In this paper we consider 272 non-isomorphic connected graph access structures with nine vertices and eight or nine edges, and...The information rate is an important metric of the performance of a secret-sharing scheme. In this paper we consider 272 non-isomorphic connected graph access structures with nine vertices and eight or nine edges, and either determine or bound the optimal information rate in each case. We obtain exact values for the optimal information rate for 231 cases and present a method that is able to derive information-theoretical upper bounds on the optimal information rate. Moreover, we apply some of the constructions to determine lower bounds on the information rate. Regarding information rate, we conclude with a full listing of the known optimal information rate (or bounds on the optimal information rate) for all 272 graphs access structures of nine participants.展开更多
Any linear code can be used to construct a linear secret sharing scheme.In this paper,it is shown how to decide optimal linear codes(i.e.,with the biggest information rate)realizing a given access structure over finit...Any linear code can be used to construct a linear secret sharing scheme.In this paper,it is shown how to decide optimal linear codes(i.e.,with the biggest information rate)realizing a given access structure over finite fields.It amounts to solving a system of quadratic equations constructed from the given access structure and the corresponding adversary structure.The system becomes a linear system for binary codes.An algorithm is also given for finding the adversary structure for any given access structure.展开更多
For the applied limitation of the existing threshold decryption schemes based on the(t,n) structure, an identity-based threshold decryption scheme which can be applied on the access structure is proposed through desig...For the applied limitation of the existing threshold decryption schemes based on the(t,n) structure, an identity-based threshold decryption scheme which can be applied on the access structure is proposed through designing a special distribution algorithm of the private key shares.The generation and distribution of private key shares,the encryption,the decryption and the combination are introduced in detail.The validity and security of the scheme are proved and analyzed.Comparisons with the existing schemes show that the proposed scheme is more flexible.展开更多
With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed...With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments.However,existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios.To address these challenges,this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection(AMED)and ciphertext-policy attributebased encryption(CP-ABE).This proposed algorithm enhances the conventional median edge detection(MED)by incorporating dynamic variables to improve pixel prediction accuracy.The carrier image is subsequently reconstructed using the Huffman coding technique.Encrypted image generation is then achieved by encrypting the image based on system user attributes and data access rights,with the hierarchical embedding of the group’s secret data seamlessly integrated during the encryption process using the CP-ABE scheme.Ultimately,the encrypted image is transmitted to the data hider,enabling independent embedding of the secret data and resulting in the creation of the marked encrypted image.This approach allows only the receiver to extract the authorized group’s secret data,thereby enabling fine-grained,controlled access.Test results indicate that,in contrast to current algorithms,the method introduced here considerably improves the embedding rate while preserving lossless image recovery.Specifically,the average maximum embedding rates for the(3,4)-threshold and(6,6)-threshold schemes reach 5.7853 bits per pixel(bpp)and 7.7781 bpp,respectively,across the BOSSbase,BOW-2,and USD databases.Furthermore,the algorithm facilitates permission-granting and joint-decryption capabilities.Additionally,this paper conducts a comprehensive examination of the algorithm’s robustness using metrics such as image correlation,information entropy,and number of pixel change rate(NPCR),confirming its high level of security.Overall,the algorithm can be applied in a multi-user and multi-level cloud service environment to realize the secure storage of carrier images and secret data.展开更多
Attribute revocation is inevitable and al- so important for Attribute-Based Encryption (ABE) in practice. However, little attention has been paid to this issue, and it retrains one of the rmin obsta-cles for the app...Attribute revocation is inevitable and al- so important for Attribute-Based Encryption (ABE) in practice. However, little attention has been paid to this issue, and it retrains one of the rmin obsta-cles for the application of ABE. Most of existing ABE schemes support attribute revocation work under indirect revocation model such that all the users' private keys will be affected when the revo-cation events occur. Though some ABE schemes have realized revocation under direct revocation model such that the revocation list is embedded in the ciphertext and none of the users' private keys will be affected by revocation, they mostly focused on the user revocation that revokes the user's whole attributes, or they can only be proven to be selectively secure. In this paper, we first define a model of adaptively secure ABE supporting the at- tribute revocation under direct revocation model. Then we propose a Key-Policy ABE (KP-ABE) scheme and a Ciphertext-Policy ABE (CP-ABE) scheme on composite order bilinear groups. Finally, we prove our schemes to be adaptively secure by employing the methodology of dual system eno cryption.展开更多
Ciphertext-policy attribute-based encryption(CP-ABE)is a promising cryptographic solution to the problem for enforcing fine-grained access control over encrypted data in the cloud.However,when applying CP-ABE to data ...Ciphertext-policy attribute-based encryption(CP-ABE)is a promising cryptographic solution to the problem for enforcing fine-grained access control over encrypted data in the cloud.However,when applying CP-ABE to data outsourcing scenarios,we have to address the challenging issue of policy updates because access control elements,such as users,attributes,and access rules may change frequently.In this paper,we propose a notion of access policy updatable ciphertext-policy attribute-based encryption(APU-CP-ABE)by combining the idea of ciphertext-policy attribute-based key encapsulation and symmetric proxy re-encryption.When an access policy update occurs,data owner is no longer required to download any data for re-encryption from the cloud,all he needs to do is generate a re-encryption key and produce a new encapsulated symmetric key,and then upload them to the cloud.The cloud server executes re-encryption without decryption.Because the re-encrypted ciphertext is encrypted under a completely new key,users cannot decrypt data even if they keep the old symmetric keys or parts of the previous ciphertext.We present an APU-CP-ABE construction based on Syalim et al.’s[Syalim,Nishide and Sakurai(2017)]improved symmetric proxy re-encryption scheme and Agrawal et al.’s[Agrawal and Chase(2017)]attribute-based message encryption scheme.It requires only 6 bilinear pairing operations for decryption,regardless of the number of attributes involved.This makes our construction particularly attractive when decryption is time-critical.展开更多
In this paper we propose a novel and efficient quantum secret sharing protocol using d-level single particle,which it can realize a general access structure via the thought of concatenation. In addition, Our scheme in...In this paper we propose a novel and efficient quantum secret sharing protocol using d-level single particle,which it can realize a general access structure via the thought of concatenation. In addition, Our scheme includes all advantages of Tavakoli's scheme [Phys. Rev. A 92 (2015) 030302(R)]. In contrast to Tavakoli's scheme, the efficiency of our scheme is 1 for the same situation, and the access structure is more general and has advantages in practical significance. Furthermore, we also analyze the security of our scheme in the primary quantum attacks.展开更多
For a binary linear code,a new relation between the intersection and(2,2)-separating property is addressed,and a relation between the intersection and the trellis complexity is also given.Using above relations,the aut...For a binary linear code,a new relation between the intersection and(2,2)-separating property is addressed,and a relation between the intersection and the trellis complexity is also given.Using above relations,the authors will apply several classes of binary codes to secret sharing scheme and determine their trellis complexity and separating properties.The authors also present the properties of the intersection of certain kinds of two-weight binary codes.By using the concept of value function,the intersecting properties of general binary codes are described.展开更多
In this paper, we propose a novel space efficient secret sharing scheme on the basis of minimal linear codes, which satisfies the definition of a computationally efficient secret sharing scheme. In the scheme, we part...In this paper, we propose a novel space efficient secret sharing scheme on the basis of minimal linear codes, which satisfies the definition of a computationally efficient secret sharing scheme. In the scheme, we partition the underlying minimal linear code into disjoint classes, establishing a one-to-one correspondence between the minimal authorized subsets of participants and the representative codewords of all different classes. Each participant, with only one short share transmitted through a public channel, can share a large secret. Therefore, the proposed scheme can distribute a large secret in practical applications such as secure information dispersal in sensor networks and secure multiparty computation.展开更多
基金Supported bythe National Basic Research Programof China(973 Program G1999035805)
文摘A multiple secret sharing scheme can share a group of secrets in each sharing session, which is very useful especially in sharing large secrets. However, most of the existing multiple secret sharing schemes are (t, n) threshold schemes, so they are fit for only threshold applications and unfit for the applications of general access structures. Due to the fact that a (t, n) threshold scheme could only handle a small fraction of the secret sharing idea, a novel multi-secret sharing scheme is proposed, which is designed based on general access structures. The security of this scheme is the same as that of Shamir's threshold secret sharing scheme. Compared with the existing multiple secret sharing schemes, the proposed scheme can provide greater capabilities for many applications because it is able to deal with applications of general access structures.
文摘A group oriented cryptosystem for the vector space access structure was proposed. This cryptosystem adopts self-certified public keys. It allows the participants of an authorized subset to cooperatively access an encrypted message. All data delivered in the cryptosystem are public. Therefore it does not need a partial decrypting results combiner and any secure communication channel. The security of the group oriented cryptosystem is based on the intractability of the discrete log problem and difficulty of factoring large integers. The suspected attacks can not break it.
文摘In this paper we study linear secret sharing schemes by monotone span programs, according to the relation between realizing access structures by linear secret sharing schemes and computing monotone Boolean functions by monotone span programs. We construct some linear secret sharing schemes. Furthermore, we study the rearrangements of access structures that is very important in practice.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 61373150) and the Key Technologies R & D Program of Shaanxi Province (2013k0611).
文摘The information rate is an important metric of the performance of a secret-sharing scheme. In this paper we consider 272 non-isomorphic connected graph access structures with nine vertices and eight or nine edges, and either determine or bound the optimal information rate in each case. We obtain exact values for the optimal information rate for 231 cases and present a method that is able to derive information-theoretical upper bounds on the optimal information rate. Moreover, we apply some of the constructions to determine lower bounds on the information rate. Regarding information rate, we conclude with a full listing of the known optimal information rate (or bounds on the optimal information rate) for all 272 graphs access structures of nine participants.
基金supported by the Foundation of National Natural Science of China under Grant No.11271003the National Science Foundation (USA) under Grant No.DMS-0302549+1 种基金Guangdong Provincial Natural Science Foundation(China)under Grant No.S2012010009950High Level Talents Project of Guangdong,and Scientific Research Project of Education Bureau in Guangzhou under Grant No.2012A004
文摘Any linear code can be used to construct a linear secret sharing scheme.In this paper,it is shown how to decide optimal linear codes(i.e.,with the biggest information rate)realizing a given access structure over finite fields.It amounts to solving a system of quadratic equations constructed from the given access structure and the corresponding adversary structure.The system becomes a linear system for binary codes.An algorithm is also given for finding the adversary structure for any given access structure.
基金the National Natural Science Foundation of China(No.60374066)
文摘For the applied limitation of the existing threshold decryption schemes based on the(t,n) structure, an identity-based threshold decryption scheme which can be applied on the access structure is proposed through designing a special distribution algorithm of the private key shares.The generation and distribution of private key shares,the encryption,the decryption and the combination are introduced in detail.The validity and security of the scheme are proved and analyzed.Comparisons with the existing schemes show that the proposed scheme is more flexible.
基金the National Natural Science Foundation of China(Grant Numbers 622724786210245062102451).
文摘With the rapid advancement of cloud computing technology,reversible data hiding algorithms in encrypted images(RDH-EI)have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments.However,existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios.To address these challenges,this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection(AMED)and ciphertext-policy attributebased encryption(CP-ABE).This proposed algorithm enhances the conventional median edge detection(MED)by incorporating dynamic variables to improve pixel prediction accuracy.The carrier image is subsequently reconstructed using the Huffman coding technique.Encrypted image generation is then achieved by encrypting the image based on system user attributes and data access rights,with the hierarchical embedding of the group’s secret data seamlessly integrated during the encryption process using the CP-ABE scheme.Ultimately,the encrypted image is transmitted to the data hider,enabling independent embedding of the secret data and resulting in the creation of the marked encrypted image.This approach allows only the receiver to extract the authorized group’s secret data,thereby enabling fine-grained,controlled access.Test results indicate that,in contrast to current algorithms,the method introduced here considerably improves the embedding rate while preserving lossless image recovery.Specifically,the average maximum embedding rates for the(3,4)-threshold and(6,6)-threshold schemes reach 5.7853 bits per pixel(bpp)and 7.7781 bpp,respectively,across the BOSSbase,BOW-2,and USD databases.Furthermore,the algorithm facilitates permission-granting and joint-decryption capabilities.Additionally,this paper conducts a comprehensive examination of the algorithm’s robustness using metrics such as image correlation,information entropy,and number of pixel change rate(NPCR),confirming its high level of security.Overall,the algorithm can be applied in a multi-user and multi-level cloud service environment to realize the secure storage of carrier images and secret data.
文摘Attribute revocation is inevitable and al- so important for Attribute-Based Encryption (ABE) in practice. However, little attention has been paid to this issue, and it retrains one of the rmin obsta-cles for the application of ABE. Most of existing ABE schemes support attribute revocation work under indirect revocation model such that all the users' private keys will be affected when the revo-cation events occur. Though some ABE schemes have realized revocation under direct revocation model such that the revocation list is embedded in the ciphertext and none of the users' private keys will be affected by revocation, they mostly focused on the user revocation that revokes the user's whole attributes, or they can only be proven to be selectively secure. In this paper, we first define a model of adaptively secure ABE supporting the at- tribute revocation under direct revocation model. Then we propose a Key-Policy ABE (KP-ABE) scheme and a Ciphertext-Policy ABE (CP-ABE) scheme on composite order bilinear groups. Finally, we prove our schemes to be adaptively secure by employing the methodology of dual system eno cryption.
基金This research is funded by Science and Technology Program of Guangzhou(Grant No.201707010358).
文摘Ciphertext-policy attribute-based encryption(CP-ABE)is a promising cryptographic solution to the problem for enforcing fine-grained access control over encrypted data in the cloud.However,when applying CP-ABE to data outsourcing scenarios,we have to address the challenging issue of policy updates because access control elements,such as users,attributes,and access rules may change frequently.In this paper,we propose a notion of access policy updatable ciphertext-policy attribute-based encryption(APU-CP-ABE)by combining the idea of ciphertext-policy attribute-based key encapsulation and symmetric proxy re-encryption.When an access policy update occurs,data owner is no longer required to download any data for re-encryption from the cloud,all he needs to do is generate a re-encryption key and produce a new encapsulated symmetric key,and then upload them to the cloud.The cloud server executes re-encryption without decryption.Because the re-encrypted ciphertext is encrypted under a completely new key,users cannot decrypt data even if they keep the old symmetric keys or parts of the previous ciphertext.We present an APU-CP-ABE construction based on Syalim et al.’s[Syalim,Nishide and Sakurai(2017)]improved symmetric proxy re-encryption scheme and Agrawal et al.’s[Agrawal and Chase(2017)]attribute-based message encryption scheme.It requires only 6 bilinear pairing operations for decryption,regardless of the number of attributes involved.This makes our construction particularly attractive when decryption is time-critical.
基金Sponsored by the National Natural Science Foundation of China under Grant Nos.61373150 and 61602291Industrial Research and Development Project of Science and Technology of Shaanxi Province under Grant No.2013k0611
文摘In this paper we propose a novel and efficient quantum secret sharing protocol using d-level single particle,which it can realize a general access structure via the thought of concatenation. In addition, Our scheme includes all advantages of Tavakoli's scheme [Phys. Rev. A 92 (2015) 030302(R)]. In contrast to Tavakoli's scheme, the efficiency of our scheme is 1 for the same situation, and the access structure is more general and has advantages in practical significance. Furthermore, we also analyze the security of our scheme in the primary quantum attacks.
基金supported by the National Science Foundation of China under Grant Nos.11171366 and 61170257
文摘For a binary linear code,a new relation between the intersection and(2,2)-separating property is addressed,and a relation between the intersection and the trellis complexity is also given.Using above relations,the authors will apply several classes of binary codes to secret sharing scheme and determine their trellis complexity and separating properties.The authors also present the properties of the intersection of certain kinds of two-weight binary codes.By using the concept of value function,the intersecting properties of general binary codes are described.
基金Supported by the National Natural Science Foundation of China (11271237)
文摘In this paper, we propose a novel space efficient secret sharing scheme on the basis of minimal linear codes, which satisfies the definition of a computationally efficient secret sharing scheme. In the scheme, we partition the underlying minimal linear code into disjoint classes, establishing a one-to-one correspondence between the minimal authorized subsets of participants and the representative codewords of all different classes. Each participant, with only one short share transmitted through a public channel, can share a large secret. Therefore, the proposed scheme can distribute a large secret in practical applications such as secure information dispersal in sensor networks and secure multiparty computation.