Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas r...Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas reserves from this source rock remain low to date,and the distribution characteristics and accumulation model for the coal-formed gas are not clear.Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin.The accumulations are scattered,and dominated by middle-small sized gas fields,of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3.The commercially valuable gas fields are mainly found in the central and southern parts of the basin.Vertically,the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic,among which the Paleogene and PermoCarboniferous are the main reservoir strata.According to the transporting pathway,filling mechanism and the relationship between source rocks and reservoir,the coal-formed gas accumulation model can be defined into three types:"Upward migrated,fault transported gas"accumulation model,"Laterally migrated,sandbody transported gas"accumulation model,and"Downward migrated,sub-source,fracture transported gas"accumulation model.Source rock distribution,thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas.The fault activity and the configuration of fault and caprock control the vertical enrichment pattern.展开更多
By using the latest geological,seismic,drilling and logging data,this article studies the basic conditions for the formation of the total petroleum system and the orderly coexisting characteristics and accumulation mo...By using the latest geological,seismic,drilling and logging data,this article studies the basic conditions for the formation of the total petroleum system and the orderly coexisting characteristics and accumulation models of conventional&unconventional reservoirs in the Lower Permian Fengcheng Formation in the Junggar Basin.Controlled by thermal evolution,hydrocarbon generation and expulsion process of the high-quality source rocks in alkaline lake as well as the characteristics of multi-type reservoirs(conglomerate,sandstone,dolomite and shale),conventional structure-lithologic reservoirs and tight oil and shale oil reservoirs controlled by source-reservoir structure have been formed.On the plane,mature conventional reservoirs,medium-high mature tight oil,and medium-high mature shale oil reservoirs coexist orderly from the slope area around Mahu sag to the sag.Based on the orderly coexisting characteristics of conventional and unconventional reservoirs in the Fengcheng Formation,it is clear that oil and gas in the Fengcheng Formation accumulate continuously over a large area in three accumulation models:integrated source-reservoir,source-reservoir in close contact,and separated source-reservoir model.The three accumulation models differ in relationship between source-reservoir structure,reservoir lithology and spatial distribution,hydrocarbon migration,oil and gas type.It is pointed out that the conventional&unconventional oil and gas should be explored and developed as a whole to achieve an overall breakthrough of the total petroleum system.This study is expected to enrich the geological theory of oil and gas enrichment in continental basins and to provide an analogy for exploration and research in other hydrocarbon-rich sags.展开更多
Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling fact...Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling factors and models of hydrocarbon accumulation of large lithologic reservoirs in shallow strata around the Bozhong sag are summarized,and favorable exploration areas are proposed.The coupling of the four factors of“ridge-fault-sand-zone”is crucial for the hydrocarbon enrichment in the shallow lithologic reservoirs.The convergence intensity of deep convergence ridges is the basis for shallow oil and gas enrichment,the activity intensity of large fault cutting ridges and the thickness of cap rocks control the vertical migration ability of oil and gas,the coupling degree of large sand bodies and fault cutting ridges control large-scale oil and gas filling,the fault sealing ability of structural stress concentration zones affects the enrichment degree of lithologic oil and gas reservoirs.Three enrichment models including uplift convergence type,steep slope sand convergence type and depression uplift convergence type are established through the case study of lithologic reservoirs in shallow strata around the Bozhong sag.展开更多
Based on the oil and gas exploration practice in the Songliao Basin,combined with the latest exploration and development data such as seismic,well logging and geochemistry,the basic geological conditions,oil and gas t...Based on the oil and gas exploration practice in the Songliao Basin,combined with the latest exploration and development data such as seismic,well logging and geochemistry,the basic geological conditions,oil and gas types and distribution characteristics,reservoir-forming dynamics,source-reservoir relationship and hydrocarbon accumulation model of the whole petroleum system in shallow and medium strata in the northern part of Songliao Basin are systematically studied.The shallow-medium strata in northern Songliao Basin have the conditions for the formation of whole petroleum system,with sufficient oil and gas sources,diverse reservoir types and well-developed transport system,forming a whole petroleum system centered on the source rocks of the Cretaceous Qingshankou Formation.Different types of oil and gas resources in the whole petroleum system are correlated with each other in terms of depositional system,lithologic association and physical property changes,and they,to a certain extent,have created the spatial framework with orderly symbiosis of shallow-medium conventional oil reservoirs,tight oil reservoirs and shale oil reservoirs in northern Songliao Basin.Vertically,the resources are endowed as conventional oil above source,shale oil/tight oil within source,and tight oil below source.Horizontally,conventional oil,tight oil,interlayer-type shale oil,and pure shale-type shale oil are developed in an orderly way,from the margin of the basin to the center of the depression.Three hydrocarbon accumulation models are recognized for the whole petroleum system in northern Songliao Basin,namely,buoyancy-driven charging of conventional oil above source,retention of shale oil within source,and pressure differential-driven charging of tight oil below source.展开更多
The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on...The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on creep characteristics of the granite residual soil under different stress levels, a creep model of the granite residual soil was established by rheological theory, and related parameters of the model were determined according to the experimental data at the same time. Further on, based on the established creep model, a theoretical model of dynamic stress accumulation in the granite residual soil under cyclic loading was deduced. It is found that there is a threshold of dynamic stress accumulation in this theoretical model. The dynamic stress accumulation laws of the granite residual soil are different under different cyclic loading stress. Finally, with the dynamic stress accumulation laws in the small-size samples of granite residual soil under different cycle loading studied and the experimental results comparing with the theoretical results, it verifies the validity of the theoretical model.展开更多
Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is s...Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin.展开更多
This paper, based on the sedimentary features of the coal seams in the typical extensional (faulted) coal basins between two inland mountainous areas of the Central Massif (France) deals with the accumulation mechanis...This paper, based on the sedimentary features of the coal seams in the typical extensional (faulted) coal basins between two inland mountainous areas of the Central Massif (France) deals with the accumulation mechanism and the corresponding sedimentary tectonic conditions of these thick coalbeds, and proposes a new coal accumulation model for the inland lacustrine basin thick coalbeds. The presence of a great number of gravity flow sediments such as detrital flow, diluted slurry flow or turbidity current sediments in the coal seams, and that of the contemporaneous gravity slump and deformation structure in the coal seam itself both indicate that the lacustrine environment in the accumulation of the thick coalbeds was characterized by the relatively deep flood and violent sedimentation. This model can not only interpret reasonably the accumulation mechanism of the thick coalbeds developed in the fault basins in the Central Massif, France, but also show its features distinctively from those of the accumulation model of the traditional thick coalbeds.展开更多
The exploration level in the south of Lixian slope is relatively low that causes the hydrocarbon distribution pattern and hydrocarbon accumulation model of discovered reservoirs un- clear. It was assumed that the hyd...The exploration level in the south of Lixian slope is relatively low that causes the hydrocarbon distribution pattern and hydrocarbon accumulation model of discovered reservoirs un- clear. It was assumed that the hydrocarbon accumulation model was mainly "stepped-like" type, but this model is contradicted with newly discovered reservoirs. Through comprehensive study of faults ac- tivity stages and depositional system, it can be concluded that the late period developed and late period attenuation faults act as the vertical migration path, while connected sandbodies provide lateral migra- tion path for oil and gas. Combining with the distribution of the known reservoirs and oil-source corre- lation, the hydrocarbon accumulation model in the south of Lixian slope is characterized by dual source rocks generating; connected sandbodies parallel transporting; shallow fault nose traps accumulating. This model reveals the direction and clue of the following exploration and development, which are based on shallow formation; finding subtle structure traps by fine seismic interpretation and accurate sedimentary microfacies characterization.展开更多
Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the prim...Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the primary control factors of the hydrocarbon accumulation and establish corresponding model in order to predict favorable exploration target zones of hydrocarbon reservoirs. This study demonstrates that the Upper Cretaceous Yogou Formation is a self-generation and self-accumulation type reservoir. The Yogou Formation hydrocarbon reservoirs in the Koulele area are controlled by four factors:(1) the source rock is controlled by a wide range of YS1-YS2 marine shale,(2) the sandstone reservoir is controlled by the YS3 underwater distributary channel and storm dunes,(3) migration of hydrocarbons is controlled by faults and the regional monocline structure, and(4) the accumulation of hydrocarbons is controlled by lateral seal. The structures in the western Koulele area are primarily reverse fault-blocks with large throws, and the structures in the east are dominantly fault-blocks with small throws(co-rotating and reverse) and a fault-nose. In the western Koulele area, where the facies are dominated by storm dunes on a larger scale, it is easier to form lithologic reservoirs of sandstone lens. In the eastern Koulele area, high-quality channel sandstone reservoirs, fault-blocks with small throws, and the monocline structure benefit for the formation of updip pinch out lithologic traps, fault lithologic reservoirs and fault-nose structural reservoirs. Future exploration targets should be focused in the western storm dunes zone and eastern distributary channel sand zone with small fault-blocks.展开更多
Extensive studies based on partition curve of gravity separation have been investigated. All created models are merely used to simulate density distribution at the same size fraction. However, they cannot be used to p...Extensive studies based on partition curve of gravity separation have been investigated. All created models are merely used to simulate density distribution at the same size fraction. However, they cannot be used to predictive distribution of materials depending on compound feature of density and size. According to this situation, an improved model of partition curve based on accumulation normal distribution, which was distinguished from conventional model of accumulation normal distribution for partition curve, was proposed in this paper. It could simulate density distribution at different size fractions by using the density-size compound index and conflating the partition curves at different size fractions as one partition curve. The feasibility of three compound indexes, including mass index, settlement index and transformation index, were investigated. Specific forms of the improved model were also proposed. It is found that transformation index leads to the best fitting results, while the fitting error is only 1.75 according to the fitting partition curve.展开更多
Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon a...Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon accumulation in the western foreland basins. We determined the time of neotectonic movement in the Kuqa Foreland Basin, which began from the Neogene, and analyzed the patterns of movement, which were continuous and fast subsidence in the vertical direction and intense lateral compression. The structure styles are that the faulting is weakened and the folding is strengthened gradually from north to south. We studied the control of neotectonic movement on the hydrocarbon accumulation process and model in the Kuqa Foreland Basin with basin simulation technique. The largest subsidence rate of the Kuqa Foreland Basin reached 1,200 m/Ma during the neotectonic movement, leading to rapid maturing of source rock within 5 Ma and a large quantity of hydrocarbon being generated and expelled. The thick neotectonic strata can form high quality reservoirs with the proved gas and oil reserves accounting for 5% and 27% of the total reserves, respectively. 86% of the structural traps were formed in the neotectonic movement period. The faults formed during the neotectonic movement serve as important migration pathways and they exist in the region where the hydrocarbon reservoirs are distributed. Abnormally high pressure caused by the intense lateral compression, thick neotectonic strata deposition and rapid hydrocarbon generation provide driving force for hydrocarbon migration. The accumulation elements match each other well over a short period, leading to many large gas fields formed later in the Kuqa Foreland Basin.展开更多
Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source k...Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source kitchen,the possibility that they could constitute potential plays would be overlooked in the subsequent exploration program.Based on the hydrocarbon exploration practice of the Jizhong Depression and the Erlian Basin in the past several years,this paper discusses a new understanding that reservoir distribution is controlled by multiple factors and lithological accumulations are more likely to form in trough areas.It further documents the three main factors controlling the formation of large lithological hydrocarbon accumulations in trough areas.The paper also discusses the new concept that structural and lithological accumulations not only co-exist but also complement each other.We propose that fan-delta fronts on inverted steep slopes in troughs,delta fronts and sublacustrine fans on gentle slopes,channel sands along toes of fault scarps are favorable locations for discovery of new oil accumulations.The application of this concept has led to the discovery of several hundreds of million tonnes of oil in place in trough areas in the Jizhong Depression and the Erlian Basin.展开更多
The Kuqa and the Southern Junggar foreland thrust belts, which lie to the southern and northern Tianshan, respectively, were formed under a strong compressional tectonic setting. Due to the differential propagation an...The Kuqa and the Southern Junggar foreland thrust belts, which lie to the southern and northern Tianshan, respectively, were formed under a strong compressional tectonic setting. Due to the differential propagation and deformation under the control of the décollement horizon, the structural deformation styles differ in the Kuqa and Southern Junggar thrust belts. Imbricated stacking is developed in the Kuqa thrust belt, forming a piggyback imbricated pattern of faulted anticline and fault-block structural assemblage dominated by salt structures. In contrast, wedge-shaped thrusts are developed in Southern Junggar, mainly forming vertical laminated patterns of multi-wedge-structure stacks strongly influenced by the décollement horizons. The different deformation patterns and structural styles of the north and south of Tian Shan control the contrasting characteristics of hydrocarbon accumulation in the foreland thrust belts of the Kuqa and the Southern Junggar thrust belts, including the variance in the hydrocarbon trap types, pathway systems and hydrocarbon-bearing horizons. Proven by the hydrocarbon accumulation research and exploration achievements, recent exploration targets should focus on sub-salt piggyback imbricated structural patterns in the Kuqa and the deep laminated patterns in the Southern Junggar thrust belt.展开更多
The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in...The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in this Group.Systematic investigation about the gas reservoir in Pingqiao anticline was consequently carried out in terms of characteristics of reservoir bitumen,the geochemical characteristics of natural gas,diagenetic minerals,and fluid inclusions.Based on this,combined with the reconstruction of the burial history,thermal evolution history and uplifting history of strata,and analysis of the regional tectonic settings,the hydrocarbon sources were identified and the formation and evolutionary processes of the gas reservoirs in Xixiangchi Group was revealed in this study.It was shown that the gas reservoirs have mixed gas sources from the shale source rocks in the Lower Cambrian Qiongzhusi Formation and in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,and experienced several evolutionary stages,including the paleo-oil reservoir stage from the Late Siliurian to the Middle Permian,the paleo-gas reservoir stage from the Late Permian to the Early Cretaceous,and the superimposed accumulation and mixed-source gas reservoir stage since the Late Cretaceous.The mixed-source gas reservoir is formed by the adjustment of the Xixiangchi Group paleo-gas reservoirs and depressurization of the overpressure Wufeng-Longmaxi shale gas reservoirs and the charging of gas into the Xixiangchi Group reservoir of the Pingqiao anticline since the Late Cretaceous,which show obvious superimposed accumulation characteristics.There are different accumulation patterns in different geological periods.The accumulation pattern of the“old source-young reservoir”(i.e.hydrocarbons generated from older source rocks accumulating in younger reservoirs)dominates before the Late Cretaceous,and that of“juxtaposed young source-old reservoir”(i.e.hydrocarbons generated from younger source rocks accumulating in juxtaposed older reservoirs)dominates after the Early Cretaceous.Moreover,faults acted as critical vertical pathways for hydrocarbon migration during the evolution of the Xixiangchi Group gas reservoirs.This model provides new insights and theoretical basis for evaluation and mapping of the Xixiangchi Group play fairway in eastern Sichuan Basin.展开更多
An important property of moisture absorption and sweat discharge yarns is their water transport property. In the paper, two water transport models of moisture absorption and sweat discharge yarns were developed to inv...An important property of moisture absorption and sweat discharge yarns is their water transport property. In the paper, two water transport models of moisture absorption and sweat discharge yarns were developed to investigate the influence factors on their wicking rate. In parallel Column Pores Model, wicking rate is determined by the equivalent capillary radius R and length of the capillary tube L. In Pellets Accumulation Model, wicking rate is decided by the capillary radius r and length of the fiber unit assemble L0.展开更多
The geothermal resources in Fujian Province are mainly hydrothermal resources of medium-low temperature.To better understand the whole process and conditions of heat control in the middle and deep crust,this study foc...The geothermal resources in Fujian Province are mainly hydrothermal resources of medium-low temperature.To better understand the whole process and conditions of heat control in the middle and deep crust,this study focuses on the analysis of heat accumulation model in Hongtang Area of Xiamen,and the main conditions of the model such as faults and sags are explored and interpreted in detail by using gravity and wide-field electromagnetic methods.4 main faults(F33,F2,F12 and HT-F1)and 10 secondary faults(HT-F2,HT-F3,HT-F4,HT-F5,HT-F6,HT-F7,HT-F8,HT-F9,HT-F10 and HT-F11)were inferred,and the distribution range of sags was delineated.The convective geothermal system is composed of four components:Heat source,geothermal reservoir,heat-conductive fault and heat retaining cover,which form a quaternary heat accumulation model.According to the model,the intersection of the main faults F12,HTF1 and F33 can be delineated as the primary target area of geothermal exploration,while the intersection of the secondary faults(F12 and HT-F6;F12 and HT-F2;HT-F9,HT-F10 and F12;F12 and HT-F11;F33 and HT-F3;HT-F8 and HT-F3;HT-F2,HT-F10 and HT-F1)can be delineated as the secondary target area.Borehole DR01,which is located in the primary target area,shows that the water temperature increases from fast to slow in the depth range of 0–500 m,and stays at 36℃below 500 m.The reliability of the heat accumulation model and the target area was tested via geothermal boreholes,which is of great significance to the exploitation and utilization of geothermal resources in Hongtang Area of Xiamen.展开更多
Unconventional hydrocarbon resources, which are only marginally economically explored and developed by traditional methods and techniques, are different from conventional hydrocarbon resources in their accumulation me...Unconventional hydrocarbon resources, which are only marginally economically explored and developed by traditional methods and techniques, are different from conventional hydrocarbon resources in their accumulation mechanisms, occurrence states, distribution models, and exploration and development manners. The types of unconventional hydrocarbon are controlled by the evolu- tion of the source rocks and the combinations of different types of unconventional reservoirs. The fundamental dis- tinction between unconventional hydrocarbon resources and conventional hydrocarbon resources is their non- buoyancy-driven migration. The development of the micro- to nano-scale pores results in rather high capillary resis- tance. The accumulation mechanisms of the unconven- tional and the conventional hydrocarbon resources are also greatly different. In conventional hydrocarbon resources, oil and gas entrapment is controlled by reservoir-forming factors and geological events, which is a dynamic balance process; while for unconventional hydrocarbon resources, the gas content is affected by the temperature and pressure fields, and their preservation is crucial. Unconventional and conventional hydrocarbons are distributed in an orderly manner in subsurface space, having three distribution models of intra-source rock, basin-centered, and source rock interlayer. These results will be of great significance to unconventional hydrocarbon exploration.展开更多
Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformat...Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models.展开更多
In western China, most petroliferous basins are superposed due to their multi-periodic tectonic evolution, and the mechanisms of petroleum migration and accumulation are so complex that much more sophis- ticated metho...In western China, most petroliferous basins are superposed due to their multi-periodic tectonic evolution, and the mechanisms of petroleum migration and accumulation are so complex that much more sophis- ticated methodologies are necessary for depiction of these mechanisms and identification of petroleum occurrences. For this purpose, in this article, a new methodology was formulated which includes: (I) ver- tical identification of petroleum migration and accumulation fluid dynamic systems in the superposed basins; (2) analysis of the effect of large scale regional faults and fault combinations on the fluids exchange between the vertically identified different systems; (3) analysis of petroleum migration and accumulation in each vertically identified system, and establishment of appropriate geological model of petroleum migration and accumulation for each vertically identified system. Using this methodology, the satisfactory results obtained in the Lunnan Uplift of Tarim Basin and Ludong Uplift of Jungar Basin case studies are: (1) existence of different vertical fluid dynamic systems in western China's superposed basins which are very necessary for understanding the mechanism of petroleum migration and accumu- lation; (2) in deep system, long-distance lateral petroleum migration and accumulation mainly take place along the long time exposed unconformity with weathered, fractured or karst reservoir rocks; (3) regio- nal faults are the main conducts for fluids migration from deep system up to middle and/or upper sys- tems. As to middle and/or upper systems, regional faults play a role of "petroleum source". Small faults within middle and/or upper systems conduct petroleum to carrier beds with less impeding force; (4) petroleum migrated from deep system vertically up to middle and/or upper systems will migrate lat- erally in carrier beds of these systems and accumulate to form nools near or far from faults.展开更多
According to the deficiency of the strain accumulating and releasing curves and the previous models, the strain-accumulating rate of the strain accumulating and releasing model has been deduced based on the G-R relati...According to the deficiency of the strain accumulating and releasing curves and the previous models, the strain-accumulating rate of the strain accumulating and releasing model has been deduced based on the G-R relation and the empirical formula between energy release and earthquake magnitude, where the strain-accumulating rate is relative independent of the strain-releasing rate. Five typical areas in Chinese mainland are selected on the basis of the hypothesis on active tectonic block, and small earthquakes from 1970 are imported to calculate the annual strain-accumulating rates considering the completeness of historical seismic data. Having introduced the strain-accumulating rates into the amended model, present strain phases are got. According to the present stages in their own cycles, the future earthquake tendency of each sub-region is discussed.展开更多
基金financial support from the National major projects (Item No.2016ZX05006-003)
文摘Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas reserves from this source rock remain low to date,and the distribution characteristics and accumulation model for the coal-formed gas are not clear.Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin.The accumulations are scattered,and dominated by middle-small sized gas fields,of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3.The commercially valuable gas fields are mainly found in the central and southern parts of the basin.Vertically,the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic,among which the Paleogene and PermoCarboniferous are the main reservoir strata.According to the transporting pathway,filling mechanism and the relationship between source rocks and reservoir,the coal-formed gas accumulation model can be defined into three types:"Upward migrated,fault transported gas"accumulation model,"Laterally migrated,sandbody transported gas"accumulation model,and"Downward migrated,sub-source,fracture transported gas"accumulation model.Source rock distribution,thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas.The fault activity and the configuration of fault and caprock control the vertical enrichment pattern.
基金Supported by the China National Science and Technology Major Project(2017ZX05001-004,2016ZX05046-006)Petrochina Science and Technology Major Project(2019E-2601,2019E-2602)。
文摘By using the latest geological,seismic,drilling and logging data,this article studies the basic conditions for the formation of the total petroleum system and the orderly coexisting characteristics and accumulation models of conventional&unconventional reservoirs in the Lower Permian Fengcheng Formation in the Junggar Basin.Controlled by thermal evolution,hydrocarbon generation and expulsion process of the high-quality source rocks in alkaline lake as well as the characteristics of multi-type reservoirs(conglomerate,sandstone,dolomite and shale),conventional structure-lithologic reservoirs and tight oil and shale oil reservoirs controlled by source-reservoir structure have been formed.On the plane,mature conventional reservoirs,medium-high mature tight oil,and medium-high mature shale oil reservoirs coexist orderly from the slope area around Mahu sag to the sag.Based on the orderly coexisting characteristics of conventional and unconventional reservoirs in the Fengcheng Formation,it is clear that oil and gas in the Fengcheng Formation accumulate continuously over a large area in three accumulation models:integrated source-reservoir,source-reservoir in close contact,and separated source-reservoir model.The three accumulation models differ in relationship between source-reservoir structure,reservoir lithology and spatial distribution,hydrocarbon migration,oil and gas type.It is pointed out that the conventional&unconventional oil and gas should be explored and developed as a whole to achieve an overall breakthrough of the total petroleum system.This study is expected to enrich the geological theory of oil and gas enrichment in continental basins and to provide an analogy for exploration and research in other hydrocarbon-rich sags.
基金Supported by the China National Science and Technology Major Project(2011ZX05023-006-002,2016ZX05024-003).
文摘Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling factors and models of hydrocarbon accumulation of large lithologic reservoirs in shallow strata around the Bozhong sag are summarized,and favorable exploration areas are proposed.The coupling of the four factors of“ridge-fault-sand-zone”is crucial for the hydrocarbon enrichment in the shallow lithologic reservoirs.The convergence intensity of deep convergence ridges is the basis for shallow oil and gas enrichment,the activity intensity of large fault cutting ridges and the thickness of cap rocks control the vertical migration ability of oil and gas,the coupling degree of large sand bodies and fault cutting ridges control large-scale oil and gas filling,the fault sealing ability of structural stress concentration zones affects the enrichment degree of lithologic oil and gas reservoirs.Three enrichment models including uplift convergence type,steep slope sand convergence type and depression uplift convergence type are established through the case study of lithologic reservoirs in shallow strata around the Bozhong sag.
基金Supported by the PetroChina Major Science and Technology Project (2016E0201,2021ZZ10,2021DJ0101)。
文摘Based on the oil and gas exploration practice in the Songliao Basin,combined with the latest exploration and development data such as seismic,well logging and geochemistry,the basic geological conditions,oil and gas types and distribution characteristics,reservoir-forming dynamics,source-reservoir relationship and hydrocarbon accumulation model of the whole petroleum system in shallow and medium strata in the northern part of Songliao Basin are systematically studied.The shallow-medium strata in northern Songliao Basin have the conditions for the formation of whole petroleum system,with sufficient oil and gas sources,diverse reservoir types and well-developed transport system,forming a whole petroleum system centered on the source rocks of the Cretaceous Qingshankou Formation.Different types of oil and gas resources in the whole petroleum system are correlated with each other in terms of depositional system,lithologic association and physical property changes,and they,to a certain extent,have created the spatial framework with orderly symbiosis of shallow-medium conventional oil reservoirs,tight oil reservoirs and shale oil reservoirs in northern Songliao Basin.Vertically,the resources are endowed as conventional oil above source,shale oil/tight oil within source,and tight oil below source.Horizontally,conventional oil,tight oil,interlayer-type shale oil,and pure shale-type shale oil are developed in an orderly way,from the margin of the basin to the center of the depression.Three hydrocarbon accumulation models are recognized for the whole petroleum system in northern Songliao Basin,namely,buoyancy-driven charging of conventional oil above source,retention of shale oil within source,and pressure differential-driven charging of tight oil below source.
基金Projects(41572277,41877229)supported by the National Natural Science Foundation of ChinaProject(2018B030311066)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(201607010023)supported by the Science and Technology Program of Guangzhou,China
文摘The creep behaviors of granite residual soil with pre-stress of 100 kPa was investigated by a series of small size creep tests. Three different types of strain curves were obtained at different stress levels. Based on creep characteristics of the granite residual soil under different stress levels, a creep model of the granite residual soil was established by rheological theory, and related parameters of the model were determined according to the experimental data at the same time. Further on, based on the established creep model, a theoretical model of dynamic stress accumulation in the granite residual soil under cyclic loading was deduced. It is found that there is a threshold of dynamic stress accumulation in this theoretical model. The dynamic stress accumulation laws of the granite residual soil are different under different cyclic loading stress. Finally, with the dynamic stress accumulation laws in the small-size samples of granite residual soil under different cycle loading studied and the experimental results comparing with the theoretical results, it verifies the validity of the theoretical model.
基金supported by the National Science and Technology Major Project of China(2016ZX05033)the Project of SINOPEC Science and Technology Department(P19021-2)the Basic Prospective Research Project of SINOPEC(P22214-2).
文摘Commercial hydrocarbon reservoirs have been discovered in shallow-water areas of the Scotian Basin, Eastern Canada. However, knowledge about the structure and hydrocarbon accumulation characteristics of the basin is still insufficient, which constrains the oil and gas exploration in deep-water areas. Based on comprehensive data of magnetic anomalies, seismic survey, and drilling, this study determines the structure characteristics of the Scotian Basin and its hydrocarbon accumulation conditions in deep waters and evaluates the deep-water hydrocarbon exploration potential. The transform faults and basement structures in the northern basin control the sedimentary framework showing thick strata in east and thin strata in west of the basin. The bowl-shaped depression formed by thermal subsidence during the transitional phase and the confined environment (micro basins) caused by salt tectonics provide favorable conditions for the development of source rocks during the depression stage (also referred to as the depression period sequence) of the basin. The progradation of large shelf-margin deltas during the drift phase and steep continental slope provide favorable conditions for the deposition of slope-floor fans on continental margins of the basin. Moreover, the source-reservoir assemblage comprising the source rocks within the depression stage and the turbidite sandstones on the continental margin in the deep waters may form large deep-water turbidite sandstone reservoirs. This study will provide a valuable reference for the deep-water hydrocarbon exploration in the Scotian Basin.
基金This study is supported by National Natural Science Foundation of China( No.4990 2 0 12 ) and by the Project of the High Scho
文摘This paper, based on the sedimentary features of the coal seams in the typical extensional (faulted) coal basins between two inland mountainous areas of the Central Massif (France) deals with the accumulation mechanism and the corresponding sedimentary tectonic conditions of these thick coalbeds, and proposes a new coal accumulation model for the inland lacustrine basin thick coalbeds. The presence of a great number of gravity flow sediments such as detrital flow, diluted slurry flow or turbidity current sediments in the coal seams, and that of the contemporaneous gravity slump and deformation structure in the coal seam itself both indicate that the lacustrine environment in the accumulation of the thick coalbeds was characterized by the relatively deep flood and violent sedimentation. This model can not only interpret reasonably the accumulation mechanism of the thick coalbeds developed in the fault basins in the Central Massif, France, but also show its features distinctively from those of the accumulation model of the traditional thick coalbeds.
基金supported by the Nation Nature Science Foun-dation of China(No.41072084)Project of Large Oil and Gas Fields and Coal-bed Methane Development,China(No.2011ZX05001)
文摘The exploration level in the south of Lixian slope is relatively low that causes the hydrocarbon distribution pattern and hydrocarbon accumulation model of discovered reservoirs un- clear. It was assumed that the hydrocarbon accumulation model was mainly "stepped-like" type, but this model is contradicted with newly discovered reservoirs. Through comprehensive study of faults ac- tivity stages and depositional system, it can be concluded that the late period developed and late period attenuation faults act as the vertical migration path, while connected sandbodies provide lateral migra- tion path for oil and gas. Combining with the distribution of the known reservoirs and oil-source corre- lation, the hydrocarbon accumulation model in the south of Lixian slope is characterized by dual source rocks generating; connected sandbodies parallel transporting; shallow fault nose traps accumulating. This model reveals the direction and clue of the following exploration and development, which are based on shallow formation; finding subtle structure traps by fine seismic interpretation and accurate sedimentary microfacies characterization.
基金supported by the National Science and Technology Major Project of China (No. 2011ZX05009-002)
文摘Based on the sedimentary and tectonic background of the Termit Basin, this paper focuses on the Upper Cretaceous Yogou Formation and uses organic geochemistry, logging, oil testing and seismic data to analyze the primary control factors of the hydrocarbon accumulation and establish corresponding model in order to predict favorable exploration target zones of hydrocarbon reservoirs. This study demonstrates that the Upper Cretaceous Yogou Formation is a self-generation and self-accumulation type reservoir. The Yogou Formation hydrocarbon reservoirs in the Koulele area are controlled by four factors:(1) the source rock is controlled by a wide range of YS1-YS2 marine shale,(2) the sandstone reservoir is controlled by the YS3 underwater distributary channel and storm dunes,(3) migration of hydrocarbons is controlled by faults and the regional monocline structure, and(4) the accumulation of hydrocarbons is controlled by lateral seal. The structures in the western Koulele area are primarily reverse fault-blocks with large throws, and the structures in the east are dominantly fault-blocks with small throws(co-rotating and reverse) and a fault-nose. In the western Koulele area, where the facies are dominated by storm dunes on a larger scale, it is easier to form lithologic reservoirs of sandstone lens. In the eastern Koulele area, high-quality channel sandstone reservoirs, fault-blocks with small throws, and the monocline structure benefit for the formation of updip pinch out lithologic traps, fault lithologic reservoirs and fault-nose structural reservoirs. Future exploration targets should be focused in the western storm dunes zone and eastern distributary channel sand zone with small fault-blocks.
基金the financial support from the National Natural Science Foundation of China (No. 51221462)
文摘Extensive studies based on partition curve of gravity separation have been investigated. All created models are merely used to simulate density distribution at the same size fraction. However, they cannot be used to predictive distribution of materials depending on compound feature of density and size. According to this situation, an improved model of partition curve based on accumulation normal distribution, which was distinguished from conventional model of accumulation normal distribution for partition curve, was proposed in this paper. It could simulate density distribution at different size fractions by using the density-size compound index and conflating the partition curves at different size fractions as one partition curve. The feasibility of three compound indexes, including mass index, settlement index and transformation index, were investigated. Specific forms of the improved model were also proposed. It is found that transformation index leads to the best fitting results, while the fitting error is only 1.75 according to the fitting partition curve.
基金supported by the Foundation Project of State Key Laboratory of Petroleum Resources and Prospecting (PRPDX2008-05)the "973" National Key Basic Research Program (2006CB202308)
文摘Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon accumulation in the western foreland basins. We determined the time of neotectonic movement in the Kuqa Foreland Basin, which began from the Neogene, and analyzed the patterns of movement, which were continuous and fast subsidence in the vertical direction and intense lateral compression. The structure styles are that the faulting is weakened and the folding is strengthened gradually from north to south. We studied the control of neotectonic movement on the hydrocarbon accumulation process and model in the Kuqa Foreland Basin with basin simulation technique. The largest subsidence rate of the Kuqa Foreland Basin reached 1,200 m/Ma during the neotectonic movement, leading to rapid maturing of source rock within 5 Ma and a large quantity of hydrocarbon being generated and expelled. The thick neotectonic strata can form high quality reservoirs with the proved gas and oil reserves accounting for 5% and 27% of the total reserves, respectively. 86% of the structural traps were formed in the neotectonic movement period. The faults formed during the neotectonic movement serve as important migration pathways and they exist in the region where the hydrocarbon reservoirs are distributed. Abnormally high pressure caused by the intense lateral compression, thick neotectonic strata deposition and rapid hydrocarbon generation provide driving force for hydrocarbon migration. The accumulation elements match each other well over a short period, leading to many large gas fields formed later in the Kuqa Foreland Basin.
文摘Previously,troughs in continental faulted depressions were usually considered as a zone of hydrocarbon generation and expulsion rather than a zone for hydrocarbon accumulation.If they were confirmed to be the source kitchen,the possibility that they could constitute potential plays would be overlooked in the subsequent exploration program.Based on the hydrocarbon exploration practice of the Jizhong Depression and the Erlian Basin in the past several years,this paper discusses a new understanding that reservoir distribution is controlled by multiple factors and lithological accumulations are more likely to form in trough areas.It further documents the three main factors controlling the formation of large lithological hydrocarbon accumulations in trough areas.The paper also discusses the new concept that structural and lithological accumulations not only co-exist but also complement each other.We propose that fan-delta fronts on inverted steep slopes in troughs,delta fronts and sublacustrine fans on gentle slopes,channel sands along toes of fault scarps are favorable locations for discovery of new oil accumulations.The application of this concept has led to the discovery of several hundreds of million tonnes of oil in place in trough areas in the Jizhong Depression and the Erlian Basin.
基金financially supported by the National Key Projects of China(2011ZX05003)the 12th Five-year Program of Petrochina(2011B-04)the State Key Laboratory of EOR
文摘The Kuqa and the Southern Junggar foreland thrust belts, which lie to the southern and northern Tianshan, respectively, were formed under a strong compressional tectonic setting. Due to the differential propagation and deformation under the control of the décollement horizon, the structural deformation styles differ in the Kuqa and Southern Junggar thrust belts. Imbricated stacking is developed in the Kuqa thrust belt, forming a piggyback imbricated pattern of faulted anticline and fault-block structural assemblage dominated by salt structures. In contrast, wedge-shaped thrusts are developed in Southern Junggar, mainly forming vertical laminated patterns of multi-wedge-structure stacks strongly influenced by the décollement horizons. The different deformation patterns and structural styles of the north and south of Tian Shan control the contrasting characteristics of hydrocarbon accumulation in the foreland thrust belts of the Kuqa and the Southern Junggar thrust belts, including the variance in the hydrocarbon trap types, pathway systems and hydrocarbon-bearing horizons. Proven by the hydrocarbon accumulation research and exploration achievements, recent exploration targets should focus on sub-salt piggyback imbricated structural patterns in the Kuqa and the deep laminated patterns in the Southern Junggar thrust belt.
基金supported by the National Key R&D Program of China grant(2017YFC0603105).
文摘The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in this Group.Systematic investigation about the gas reservoir in Pingqiao anticline was consequently carried out in terms of characteristics of reservoir bitumen,the geochemical characteristics of natural gas,diagenetic minerals,and fluid inclusions.Based on this,combined with the reconstruction of the burial history,thermal evolution history and uplifting history of strata,and analysis of the regional tectonic settings,the hydrocarbon sources were identified and the formation and evolutionary processes of the gas reservoirs in Xixiangchi Group was revealed in this study.It was shown that the gas reservoirs have mixed gas sources from the shale source rocks in the Lower Cambrian Qiongzhusi Formation and in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,and experienced several evolutionary stages,including the paleo-oil reservoir stage from the Late Siliurian to the Middle Permian,the paleo-gas reservoir stage from the Late Permian to the Early Cretaceous,and the superimposed accumulation and mixed-source gas reservoir stage since the Late Cretaceous.The mixed-source gas reservoir is formed by the adjustment of the Xixiangchi Group paleo-gas reservoirs and depressurization of the overpressure Wufeng-Longmaxi shale gas reservoirs and the charging of gas into the Xixiangchi Group reservoir of the Pingqiao anticline since the Late Cretaceous,which show obvious superimposed accumulation characteristics.There are different accumulation patterns in different geological periods.The accumulation pattern of the“old source-young reservoir”(i.e.hydrocarbons generated from older source rocks accumulating in younger reservoirs)dominates before the Late Cretaceous,and that of“juxtaposed young source-old reservoir”(i.e.hydrocarbons generated from younger source rocks accumulating in juxtaposed older reservoirs)dominates after the Early Cretaceous.Moreover,faults acted as critical vertical pathways for hydrocarbon migration during the evolution of the Xixiangchi Group gas reservoirs.This model provides new insights and theoretical basis for evaluation and mapping of the Xixiangchi Group play fairway in eastern Sichuan Basin.
基金Supported by National Nature Science Fund ( No.50643014)"Yangtze Scholar and Innovation Team Development Plan"Innovation Team(No.IRT0654)Science Research Fund of Zhejiang Sci-Tech University (No.0601065-Y)
文摘An important property of moisture absorption and sweat discharge yarns is their water transport property. In the paper, two water transport models of moisture absorption and sweat discharge yarns were developed to investigate the influence factors on their wicking rate. In parallel Column Pores Model, wicking rate is determined by the equivalent capillary radius R and length of the capillary tube L. In Pellets Accumulation Model, wicking rate is decided by the capillary radius r and length of the fiber unit assemble L0.
基金supported by the National Natural Science Foundation of China (Grants Nos. 41902242)the Geological Survey Projects Foundation of the Institute of Hydrogeology and Environmental Geology (Grants Nos. DD20190303, DD20221773)。
文摘The geothermal resources in Fujian Province are mainly hydrothermal resources of medium-low temperature.To better understand the whole process and conditions of heat control in the middle and deep crust,this study focuses on the analysis of heat accumulation model in Hongtang Area of Xiamen,and the main conditions of the model such as faults and sags are explored and interpreted in detail by using gravity and wide-field electromagnetic methods.4 main faults(F33,F2,F12 and HT-F1)and 10 secondary faults(HT-F2,HT-F3,HT-F4,HT-F5,HT-F6,HT-F7,HT-F8,HT-F9,HT-F10 and HT-F11)were inferred,and the distribution range of sags was delineated.The convective geothermal system is composed of four components:Heat source,geothermal reservoir,heat-conductive fault and heat retaining cover,which form a quaternary heat accumulation model.According to the model,the intersection of the main faults F12,HTF1 and F33 can be delineated as the primary target area of geothermal exploration,while the intersection of the secondary faults(F12 and HT-F6;F12 and HT-F2;HT-F9,HT-F10 and F12;F12 and HT-F11;F33 and HT-F3;HT-F8 and HT-F3;HT-F2,HT-F10 and HT-F1)can be delineated as the secondary target area.Borehole DR01,which is located in the primary target area,shows that the water temperature increases from fast to slow in the depth range of 0–500 m,and stays at 36℃below 500 m.The reliability of the heat accumulation model and the target area was tested via geothermal boreholes,which is of great significance to the exploitation and utilization of geothermal resources in Hongtang Area of Xiamen.
基金supported by Major Projects of Oil and Gas of China (No. 2011ZX05018-002)
文摘Unconventional hydrocarbon resources, which are only marginally economically explored and developed by traditional methods and techniques, are different from conventional hydrocarbon resources in their accumulation mechanisms, occurrence states, distribution models, and exploration and development manners. The types of unconventional hydrocarbon are controlled by the evolu- tion of the source rocks and the combinations of different types of unconventional reservoirs. The fundamental dis- tinction between unconventional hydrocarbon resources and conventional hydrocarbon resources is their non- buoyancy-driven migration. The development of the micro- to nano-scale pores results in rather high capillary resis- tance. The accumulation mechanisms of the unconven- tional and the conventional hydrocarbon resources are also greatly different. In conventional hydrocarbon resources, oil and gas entrapment is controlled by reservoir-forming factors and geological events, which is a dynamic balance process; while for unconventional hydrocarbon resources, the gas content is affected by the temperature and pressure fields, and their preservation is crucial. Unconventional and conventional hydrocarbons are distributed in an orderly manner in subsurface space, having three distribution models of intra-source rock, basin-centered, and source rock interlayer. These results will be of great significance to unconventional hydrocarbon exploration.
基金Project(2009AA11Z101) supported by National High Technology Research and Development Program of ChinaProject supported by Postdoctoral Science Foundation of Central South University,China+1 种基金Project(2012QNZT045) supported by Fundamental Research Funds for Central Universities of ChinaProject(2011CB710601) supported by the National Basic Research Program of China
文摘Based on dynamic triaxial test results of saturated soft clay, similarities of variations between accumulated pore water pressure and accumulated deformation were analyzed. The Parr's equation on accumulated deformation was modified to create an attenuation-type curve model on accumulated pore water pressure in saturated normal consolidation clay. In this model, dynamic strength was introduced and a new parameter called equivalent dynamic stress level was added. Besides, based on comparative analysis on variations between failure-type and attenuatiun-type curves, a failure-type curve model was created on accumulated pore water pressure in saturated normal consolidation clay. Two models can take cycle number, coupling of static and dynamic deviator stress, and consolidation way into consideration. The models are verified by test results. The correlation coefficients are more than 0.98 for optimization of test results based on the two models, and there is good agreement between the optimized and test curves, which shows that the two models are suitable to predict variations of accumulated pore water pressure under different loading cases and consolidation ways. In order to improve prediction accuracy, it is suggested that loading cases and consolidation ways should be consistent with in-situ conditions when dynamic triaxial tests are used to determine the constants in the models.
基金provided by the National Basic Research Program of China (No. 2006CB20235)
文摘In western China, most petroliferous basins are superposed due to their multi-periodic tectonic evolution, and the mechanisms of petroleum migration and accumulation are so complex that much more sophis- ticated methodologies are necessary for depiction of these mechanisms and identification of petroleum occurrences. For this purpose, in this article, a new methodology was formulated which includes: (I) ver- tical identification of petroleum migration and accumulation fluid dynamic systems in the superposed basins; (2) analysis of the effect of large scale regional faults and fault combinations on the fluids exchange between the vertically identified different systems; (3) analysis of petroleum migration and accumulation in each vertically identified system, and establishment of appropriate geological model of petroleum migration and accumulation for each vertically identified system. Using this methodology, the satisfactory results obtained in the Lunnan Uplift of Tarim Basin and Ludong Uplift of Jungar Basin case studies are: (1) existence of different vertical fluid dynamic systems in western China's superposed basins which are very necessary for understanding the mechanism of petroleum migration and accumu- lation; (2) in deep system, long-distance lateral petroleum migration and accumulation mainly take place along the long time exposed unconformity with weathered, fractured or karst reservoir rocks; (3) regio- nal faults are the main conducts for fluids migration from deep system up to middle and/or upper sys- tems. As to middle and/or upper systems, regional faults play a role of "petroleum source". Small faults within middle and/or upper systems conduct petroleum to carrier beds with less impeding force; (4) petroleum migrated from deep system vertically up to middle and/or upper systems will migrate lat- erally in carrier beds of these systems and accumulate to form nools near or far from faults.
基金State Key Basic Research Development and Programming Project of China (G19980407) and Social Commonweal Research Project of the Ministry of Science and Technology (2002DIA10001).
文摘According to the deficiency of the strain accumulating and releasing curves and the previous models, the strain-accumulating rate of the strain accumulating and releasing model has been deduced based on the G-R relation and the empirical formula between energy release and earthquake magnitude, where the strain-accumulating rate is relative independent of the strain-releasing rate. Five typical areas in Chinese mainland are selected on the basis of the hypothesis on active tectonic block, and small earthquakes from 1970 are imported to calculate the annual strain-accumulating rates considering the completeness of historical seismic data. Having introduced the strain-accumulating rates into the amended model, present strain phases are got. According to the present stages in their own cycles, the future earthquake tendency of each sub-region is discussed.