期刊文献+
共找到3,733篇文章
< 1 2 187 >
每页显示 20 50 100
Genetic improvement of legume roots for adaption to acid soils
1
作者 Xinxin Li Xinghua Zhang +1 位作者 Qingsong Zhao Hong Liao 《The Crop Journal》 SCIE CSCD 2023年第4期1022-1033,共12页
Acid soils occupy approximately 50% of potentially arable lands.Improving crop productivity in acid soils,therefore,will be crucial for ensuring food security and agricultural sustainability.High soil acidity often co... Acid soils occupy approximately 50% of potentially arable lands.Improving crop productivity in acid soils,therefore,will be crucial for ensuring food security and agricultural sustainability.High soil acidity often coexists with phosphorus(P) deficiency and aluminum(Al) toxicity,a combination that severely impedes crop growth and yield across wide areas.As roots explore soil for the nutrients and water required for plant growth and development,they also sense and respond to below-ground stresses.Within the terrestrial context of widespread P deficiency and Al toxicity pressures,plants,particularly roots,have evolved a variety of mechanisms for adapting to these stresses.As legumes,soybean(Glycine max) plants may acquire nitrogen(N) through symbiotic nitrogen fixation(SNF),an adaptation that can be useful for mitigating excessive N fertilizer use,either directly as leguminous crop participants in rotation and intercropping systems,or secondarily as green manure cover crops.In this review,we investigate legumes,especially soybean,for recent advances in our understanding of root-based mechanisms linked with root architecture modification,exudation and symbiosis,together with associated genetic and molecular strategies in adaptation to individual and/or interacting P and Al conditions in acid soils.We propose that breeding legume cultivars with superior nutrient efficiency and/or Al tolerance traits through genetic selection might become a potentially powerful strategy for producing crop varieties capable of maintaining or improving yields in more stressful soil conditions subjected to increasingly challenging environmental conditions. 展开更多
关键词 acid soils Phosphorus deficiency Aluminum toxicity Genetic improvement SOYBEAN
下载PDF
Chemical Species of Aluminum Ions in Acid Soils *1 被引量:7
2
作者 XURENKOU JIGUOLIANG 《Pedosphere》 SCIE CAS CSCD 1998年第2期127-133,共7页
Soil samples collected from several acid soils in Guangdong, Fujian, Zhejiang and Anhui provinces of the southern China were employed to characterize the chemical species of aluminum ions in the soils. The proportio... Soil samples collected from several acid soils in Guangdong, Fujian, Zhejiang and Anhui provinces of the southern China were employed to characterize the chemical species of aluminum ions in the soils. The proportion of monomeric inorganic Al to total Al in soil solution was in the range of 19% to 70%, that of monomeric organic Al (Al OM) to total Al ranged from 7.7% to 69%, and that of the acid soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied. The Al OM concentration in soil solution was positively correlated with the content of dissolved organic carbon (DOC) and also affected by the concentration of Al 3+ . The complexes of aluminum with fluoride (Al F) were the predominant forms of inorganic Al, and the proportion of Al F complexes to total inorganic Al increased with pH. Under strongly acid condition, Al 3+ was also a major form of inorganic Al, and the proportion of Al 3+ to total inorganic Al decreased with increasing pH. The proportions of Al OH and Al SO 4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils. The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution. The concentrations of Al OM, Al 3+ ,Al F and Al OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth. The chemical species of aluminum ions were influenced by pH. The concentrations of Al OM, Al 3+ , Al F complexes and Al OH complexes decreased with the increase in pH. 展开更多
关键词 acid soil aluminum ion chemical species
下载PDF
Enhancing Maize Grain Yield in Acid Soils of Western Kenya Using Aluminium Tolerant Germplasm 被引量:2
3
作者 Ouma Evans Ligeyo Dickson +7 位作者 Matonyei Thomas Agalo Joyce Were Beatrice Too Emily OnkwareAugustino Gudu Samuel Kisinyo Peter Philip Nyangweso 《Journal of Agricultural Science and Technology(A)》 2013年第1期33-46,共14页
Maize (Zea mays L.) is one of the world's most important cereals and is a staple food for many people in developing countries. However, in acid soils (pH 〈 5.5), its productivity is limited by aluminium (AI) t... Maize (Zea mays L.) is one of the world's most important cereals and is a staple food for many people in developing countries. However, in acid soils (pH 〈 5.5), its productivity is limited by aluminium (AI) toxicity, besides other factors. The objectives of this study were to: develop AI tolerant maize inbred lines for a maize breeding program in Kenya, develop single cross hybrids (SCHs) from some of the tolerant inbred lines and determine AI tolerance levels of the SCHs. One hundred and seventy five inbreds and 49 SCHs were developed and screened in nutrient culture containing 0 or 222μM using Relative Net Root Growth (RNRG), hematoxylin staining (HS) and under AI saturated field conditions (44%-45.6%) at Sega and Chepkoilel. Seedling root growth was inhibited in 95% of the inbreds. F hybrids obtained from inbreds varying in A1 tolerance, exhibited tolerance equal to or greater than that of the more tolerant parent indicating a positive transgressive inheritance to AI toxicity. Fifty eight percent of the F SCHs were heterotic for tolerance to AI toxicity. AI tolerance estimated by RNRG was well correlated to that of HS (r2 = 0.88, P 〈 0.005) but minimally correlated with the field estimates (r2 = 0.24-0.35), implying that RNRG can predict field selection under AI toxic soils by between 24% and 35%. Plant breeders should therefore employ both approaches in selecting cultivars under AI stress. This study has developed and identified A1 tolerant inbreds and SCHs for use in the acid soils of Kenya and similar regions. 展开更多
关键词 MAIZE inbred lines HYBRIDS HETEROSIS aluminium toxicity acid soils.
下载PDF
Genotypic Differences of Forage Crop Tolerance to Acid Soils 被引量:1
4
作者 YANG YUAI CHU XIANGYUN +1 位作者 YANG XIAOE WANG KE and HE ZHENLI (Department of Soil Science and Agricultural Chemistry, Zhejiang Agricultural University, Hangzhou 310029China) 《Pedosphere》 SCIE CAS CSCD 1998年第4期337-342,共6页
Twenty eight species of forage crops were planted on acid soils derived from Quaternary red clay (pH 4.16)and red sandstone (pH 4.55) to study genotypic differences of the forage crops in tolerance to acid soils as af... Twenty eight species of forage crops were planted on acid soils derived from Quaternary red clay (pH 4.16)and red sandstone (pH 4.55) to study genotypic differences of the forage crops in tolerance to acid soils as affected by liming, phosporus and potassium fertilizer application. Eight forage species, Lolium multiflorum L., Brachiaria decumbens, Digitaria sumtisii, Melinis minutiflora, Paspalum dilatatum, Paspalum wettsteinii,Sataria viridis Beanv and Shcep’s Festuca, were highly tolerant to acid soils, and grew relatively well in the tested soils without lime application, whereas most of the other 20 tested forage species such as Lolium perenne L., Meadow Festuca and Trifolium pratense L. were intolerant to acid soils, showing retarded growth when the soil pH was below 5.5 and significant increase in dry matter yields by phosphrus fertilizer application at soil pH 6.0. Results showed that large differences in tolerance to acid soils existed among the forage species,and tolerance of the forage species to acid soils might be closely associated with their tolerance to Al and P efficiency. 展开更多
关键词 acid soil forage crop species phosphorus fertilizer potassium fertilizer
下载PDF
Relationship of Soil Qualities to Maize Growth Under Increasing Phosphorus Supply in Acid Soils of Southern Cameroon
5
作者 TCHIENKOUA M. JEMO +3 位作者 R. NJOMGANG C. NOLTE N. SANGINGA J. TAKOW 《Pedosphere》 SCIE CAS CSCD 2008年第5期645-652,共8页
A large array of soil properties influences plant growth response to phosphorus(P) fertilizer input in acid soils. We carried out a pot experiment using three contrasted acid soils from southern Cameroon with the foll... A large array of soil properties influences plant growth response to phosphorus(P) fertilizer input in acid soils. We carried out a pot experiment using three contrasted acid soils from southern Cameroon with the following main objectives:i) to assess the main soil causal factors of different maize(Zea mays L.) growth response to applied P and ii) to statistically model soil quality variation across soil types as well as their relationships to dry matter production. The soils used are classified as Typic Kandiudox(TKO) ,Rhodic Kandiudult(RKU) ,and Typic Kandiudult(TKU) . Analysis of variance,regression,and principal component analyses were used for data analysis and interpretation. Shoot dry matter yield(DMY) was significantly affected by soil type and P rate with no significant interaction. Predicted maximum attainable DMY was lowest in the TKO(26.2 g pot-1) as compared to 35.6 and 36.7 g pot-1 for the RKU and TKU,respectively. Properties that positively influenced DMY were the levels of inorganic NaHCO3-extractable P,individual basic cations(Ca,Mg,and K) ,and pH. Their effects contrasted with those of exchangeable Al and C/N ratio,which significantly depressed DMY. Principal component analysis yielded similar results,identifying 4 orthogonal components,which accounted for 84.7% of the total system variance(TSV) . Principal component 1 was identified as soil nutrient deficiency explaining 35.9% of TSV. This soil quality varied significantly among the studied soils,emerging as the only soil quality which significantly(P < 0.05) correlated with maize growth. The 2nd,3rd,and 4th components were identified as soil organic matter contents,texture,and HCl-extractable P,respectively. 展开更多
关键词 acid soil maize growth P supply principal component analysis soil quality
下载PDF
Effect of Electrolyte on the Dissolution of Aluminum from Acid Soils and the Distribution of Aluminum Forms inSoil Solution
6
作者 XURENKOU JIGUOLIANG 《Pedosphere》 SCIE CAS CSCD 1997年第4期331-338,共8页
KCl, CaCl2, NH4Cl, NaCl, K2SO4 and KF solutions were used for studying the effects of canons and anions on the dissolution of aluminum and the distribution of aluminum forms respectively. Power of exchanging and relea... KCl, CaCl2, NH4Cl, NaCl, K2SO4 and KF solutions were used for studying the effects of canons and anions on the dissolution of aluminum and the distribution of aluminum forms respectively. Power of exchanging and releasing aluminum of four kinds of canons was in the decreasing order Ca2+ >K+ >NH+4 >Na+.The dissolution of aluminum increased with the canon concentration. The adsorption affinity of various soils for aluminum was different. The aluminum in the soil with a stronger adsorption affinity was difficult to be exchanged and released by canons. The Al-F complexes were main species of inorganic aluminum at a low concentration of canons, while Al3+ became major species of inorganic aluminum at a high concentration of canons. The results on the effect of anions indicated that the concentrations of total aluminum, three kinds of inorganic aluminum (Al3+, Al-F and Al-OH complexes) and organic aluminum complexes (Al-OM)when SO2-4 was added into soil suspension were lower than those when Cl- was added. The dissolution of aluminum from soils and the distribution of aluminum forms in solution were edicted by the adsorption of Fon the soil. For soils with strong affinty for F- , the concentrations of the three inorganic aluminum species in soil solution after addition of F- were lower than those after addition of Cl-; but for soils with weak affinity for F- , the concentrations of Al3+ and Al-OM were lower and the concentrations of Al-F complexes and total inorganic aluminum after addition of F- were higher than those after addition of Cl-. The increase of F- concentration in soil solution accelerated the dissolution of aluminum from soils. 展开更多
关键词 acid soil aluminum ionic species dissolution of aluminum ELECTROLYTE
下载PDF
Agronomic Potential of Partially Acidnlated Rock Phos-phates in Acid Soils of Subtropical China
7
作者 XIONGLI-MING B.TRUONG 《Pedosphere》 SCIE CAS CSCD 1995年第2期97-105,共9页
A glasshouse experiment was conducted to evaluate the agronomic potential of four partially acidulatedrock phosphates (PARP) in three representative soils sampled from subtropical China. The PARPs weremanufactured by ... A glasshouse experiment was conducted to evaluate the agronomic potential of four partially acidulatedrock phosphates (PARP) in three representative soils sampled from subtropical China. The PARPs weremanufactured by attacking a moderately reactive phosphate rock either with sulfuric acid alone or withcombination of sulfuric and phosphoric acids at 30 or 60 percent of acidulation. Shoot dry weight and Paccumulation of six successive cuttings of ryegrass were used to compare the agronomic potential of thesefertilizers with that of the raw rock phosphate (RP) and monocalcium phosphate (MCP). Results indicatedthat the effectiveness of various phosphates was determined both by the solubility of the phosphates andby the acidity and P-fixing capacity of the soils. The higher the watersoluble P contained, the better theeffectiveness of the fertilizer was. Although plant P accumulation of PARP treatments was constantly lowerthan that of MCP treatment, some PARPs could still get a dry matter production similar to that of MCPtreatment. PARP SP60, which was acidulated with a mixture of sulfuric acid and phosphoric acid at 60percent of acidulation and contained the highest soluble P, was as effective as MCP in terms of dry matterproduction on all the soils. 560 and C1, which were both acidulated with sulfuric acid with the formerat 60 percent of acidulation and the latter at 30 percent but with a further addition of monoarninoniumphosphate, were more than 80 percent as effective as MCP. Raw RP also showed a reasonable effectivenesswhich increased with soil acidity. It was suggested from the study that some of these PARPs could beexpected to have a comparable field performance as soluble P fertilizers in the acid soil regions. 展开更多
关键词 acid soil agronomic potential partially acidulated rock phosphate
下载PDF
Comparison of Highly-Weathered Acid Soil CEC Determined by NH<sub>4</sub>OAc (pH = 7.0) Exchange Method and BaCl<sub>2</sub>-MgSO<sub>4</sub>Forced-Exchange Method
8
作者 Xiangzheng Kong Decheng Li +1 位作者 Xiaodong Song Ganlin Zhang 《Agricultural Sciences》 2021年第9期917-927,共11页
Cation exchange capacity (CEC) is one of the most important properties of soils. The NH<sub>4</sub>OAc (pH = 7.0) exchange method is usually recommended to determine CEC (CEC<sub>1</sub>) of al... Cation exchange capacity (CEC) is one of the most important properties of soils. The NH<sub>4</sub>OAc (pH = 7.0) exchange method is usually recommended to determine CEC (CEC<sub>1</sub>) of all soils with different pH values, particularly for studies on soil taxonomy. But comparatively the BaCl<sub>2</sub>-MgSO<sub>4</sub> forced-exchange method is more authentic in determining CEC (CEC<sub>2</sub>) of tropical and subtropical highly-weathered acid soils. But so far little is known about the difference between CEC<sub>1</sub> and CEC<sub>2</sub>. In this study, the physiochemical data of 114 acid B horizon soils from 112 soil series of tropical and subtropical China were used, CEC<sub>1</sub> and CEC<sub>2</sub> were determined and compared, the influencing factors were analyzed for the difference between CEC<sub>1</sub> and CEC<sub>2</sub>, and then a regression model was established between CEC<sub>1</sub> and CEC<sub>2</sub>. The results showed that CEC<sub>2</sub> was significantly lower than CEC<sub>1</sub> (p < 0.01), CEC<sub>2</sub> was 14.76% - 63.31% with a mean of 36.32% of CEC<sub>1</sub>. In view of the contribution to CEC from other properties, CEC<sub>2</sub> was mainly determined by pH (45.92%), followed by silt (21.05%), free Fe<sub>2</sub>O<sub>3</sub> (17.35%) and clay contents (12.76%), CEC<sub>1</sub> was mainly decided by free Fe<sub>2</sub>O<sub>3</sub> content (40.38%), followed by pH (28.39%) and silt content (27.29%;and the difference between CEC<sub>1</sub> and CEC<sub>2</sub> was mainly affected by free Fe<sub>2</sub>O<sub>3</sub> (50.92%), followed by silt content (26.46%) and pH (21.80%). The acceptable optimal regression model between CEC<sub>2</sub> and CEC<sub>1</sub> was established as CEC<sub>2</sub> = 2.3114 × CEC<sub>1</sub><sup>1.1496</sup> (R<sup>2</sup> = 0.410, P < 0.001, RMSE = 0.15). For the studies on soil taxonomy, the BaCl<sub>2</sub>-MgSO<sub>4</sub> forced-exchange method is recommended in determining CEC of the highly-weathered acid soils in the tropical and subtropical regions. 展开更多
关键词 acid soil CEC Determination NH4OAc (pH = 7.0) Exchange Method BaCl2-MgSO4 Forced-Exchange Method
下载PDF
Alleviation of Soil Acidity and Aluminium Phytotoxicityin Acid Soils by Using Alkaline-Stabilized Biosolids 被引量:6
9
作者 LUOYONGMING P.CHRISTIE 《Pedosphere》 SCIE CAS CSCD 2002年第2期185-188,共4页
A pot experiment was catried out to study alleviation of soil acidity and Al toxicity by applying analkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acidsandy lo... A pot experiment was catried out to study alleviation of soil acidity and Al toxicity by applying analkaline-stabilised sewage sludge product (biosolids) to an acid clay sandy loam (pH 5.7) and a strongly acidsandy loam (pH 4.5). Barley (Hondeum vulgare L. cv. Forrester) was used as a test crop and was grownin the sewage sludge-amended (33.5 t sludge DM ha-1) and unamended soils. The results showed that thealka1ine biosloids increased soil pH from 5.7 to 6.9 for the clay sandy loam and from 4.5 to 6.0 for the sandyloam. The sludge product decreased KCl-extractable Al from 0.1 to 0.0 cmol kg-1 for the former soil andfrom 4.0 to 0.1 cmol kg-1 for the latter soil. As a result, barley plants grew much better and grain yieldincreased greatly in the amended treatments compared with the unamended controls. These observationsindicate that alkaline-stabilised biosolids can be used as a liming material for remedying Al phytotoxicity instrongly acid soils by increasing soil pH and lowering Al bioavailability. 展开更多
关键词 alkaline biosolids phytotoxicity soil acidity soil remediation
下载PDF
Decreased Soil Nitrification Rate with Addition of Biochar to Acid Soils 被引量:2
10
作者 Shiyu LI Xiangshu DONG +2 位作者 Dandan LIU Li LIU Feifei HE 《Agricultural Science & Technology》 CAS 2017年第10期1932-1934,共3页
This study was conducted to investigate the effects of mixed biochar on the nitrification rate in acidic soils. A15 N tracer experiment with(15 NH4)2 SO4 was conducted to determine the nitrification rates of 4 acidic ... This study was conducted to investigate the effects of mixed biochar on the nitrification rate in acidic soils. A15 N tracer experiment with(15 NH4)2 SO4 was conducted to determine the nitrification rates of 4 acidic agricultural soils with p H 4.03-6.02 in Yunnan Province, Southern China. The accumulation of15 N-NO3-and nitrification rates decreased with the addition of biochar at the end of incubation, suggesting that biochar could be a nitrification inhibitor in acidic fertilized soil. Nitrification rates in soil with p H 4.03 were evidently lower than those in soil with p H 4.81-6.02 with or without biochar. Decreased nitrification rates were detected in the acidic soils with biochar. Soil p H controlled nitrification more than biochar in certain strongly acidic soils. 展开更多
关键词 Nitrification rate BIOCHAR 15N tracer acidic soil
下载PDF
Molecular approaches unravel the mechanism of acid soil tolerance in plants 被引量:2
11
作者 Miao Bian Meixue Zhou +1 位作者 Dongfa Sun Chengdao Li 《The Crop Journal》 SCIE CAS 2013年第2期91-104,共14页
Acid soil is a worldwide problem to plant production. Acid toxicity is mainly caused by a lack of essential nutrients in the soil and excessive toxic metals in the plant root zone. Of the toxic metals, aluminum(Al) is... Acid soil is a worldwide problem to plant production. Acid toxicity is mainly caused by a lack of essential nutrients in the soil and excessive toxic metals in the plant root zone. Of the toxic metals, aluminum(Al) is the most prevalent and most toxic. Plant species have evolved to variable levels of tolerance to aluminum enabling breeding of high Al-tolerant cultivars.Physiological and molecular approaches have revealed some mechanisms of Al toxicity in higher plants. Mechanisms of plant tolerance to Al stress include: 1) exclusion of Al from the root tips, and 2) absorbance, but tolerance of Al in root cells. Organic acid exudation to chelate Al is a feature shared by many higher plants. The future challenge for Al tolerance studies is the identification of novel tolerance mechanisms and the combination of different mechanisms to achieve higher tolerance. Molecular approaches have led to significant progress in explaining mechanisms and detection of genes responsible for Al tolerance.Gene-specific molecular markers offer better options for marker-assisted selection in breeding programs than linked marker strategies. This paper mainly focuses on recent progress in the use of molecular approaches in Al tolerance research. 展开更多
关键词 soil acidITY ALUMINUM Marker-assisted SELECTION MECHANISM
下载PDF
Distribution of soluble heavy metal concentrations in natural acid soils at depths under tropical, sub-tropical and temperate forests of China
12
作者 Xingkai XU Jin WEI Honghui XU Bin YUAN Yuesi WANG 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期228-228,共1页
关键词 生物地球化学 重金属 酸性土壤 土壤化学
下载PDF
A Brief Study on Using pH<sub>H<sub>2</sub>O</sub>to Predict pH<sub>KCl</sub>for Acid Soils
13
作者 Anqi Wang Decheng Li +1 位作者 Biao Huang Yin Lu 《Agricultural Sciences》 2019年第2期142-149,共8页
pHKCl and pHH2O are two basic necessary indexes to reflect the acidity of asoil. Predicting pHKCl?directly from pHH2O?could save the cost of laboratory work. In this study, the values of pHKCl and of 442 and 310 horiz... pHKCl and pHH2O are two basic necessary indexes to reflect the acidity of asoil. Predicting pHKCl?directly from pHH2O?could save the cost of laboratory work. In this study, the values of pHKCl and of 442 and 310 horizon samples from 126 and 98 soil profiles (0 - 120 cm in depth) surveyed from 2014 to 2015 in Guangxi and Yunnan were used to establish the optimal correlation model between pHKCl and pHH2O. The results showed that: 1) pHKCl is lower than pHH2O, pHKCl?was 0.07 - 1.99 units with a mean of 0.99 units lower than for Guangxi, while 0.03 - 1.90 units with a mean of 0.89 lower than pHH2O?for Yunan. 2) There is significant positive correlation between pHKCl?and pHH2O, the optimal correlation models between pHKCl?(y) and pHH2O?(x) for Guangxi and Yunnan are y = 0.1963x2 &minus;1.0512x + 4.338, R2 = 0.836, p 0.1859x, R2 = 0.769, p pHKCl?with exchangeable H+ and Al3+ (R2 = 0.487, 0.716, p pHKCl?is dominated by exchangeable Al3+, followed by exchangeable H+, and their contribution to pHKCl?were 71.1% and 28.7%, respectively. 展开更多
关键词 Predicting Model pHKCl pHH2O Correlation Influential Factors acid soil
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
14
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING Saline Water soil acidity soil Alkalinity
下载PDF
Differential Expression of Iron Deficiency Responsive Rice Genes under Low Phosphorus and Iron Toxicity Conditions and Association of OsIRO3 with Yield in Acidic Soils 被引量:1
15
作者 Ernieca Lyngdoh NONGBRI Sudip DAS +3 位作者 Karma Landup BHUTIA Aleimo G.MOMIN Mayank RAI Wricha TYAGI 《Rice science》 SCIE CSCD 2023年第1期58-69,共12页
With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expr... With the hypothesis that iron(Fe) deficiency responsive genes may play a role in Fe toxicity conditions,we studied five such genes OsNAS1,OsNAS3,OsIRO2,OsIRO3 and OsYSL16 across six contrasting rice genotypes for expression under high Fe and low phosphorus(P) conditions,and sequence polymorphism.Genotypes Sahbhagi Dhan,Chakhao Poirieton and Shasharang were high yielders with no bronzing symptom visible under Fe toxic field conditions,and BAM350 and BAM811 were low yielders but did not show bronzing symptoms.Hydroponic screening revealed that the number of crown roots and root length can be traits for consideration for identifying Fe toxicity tolerance in rice genotypes.Fe contents in rice roots and shoots of a high-yielding genotype KMR3 showing leaf bronzing were significantly high.In response to 24 h high Fe stress,the expression levels of OsNAS3 were up-regulated in all genotypes except KMR3.In response to 48 h high Fe stress,the expression levels of OsNAS1 were3-fold higher in tolerant Shasharang,whereas in KMR3,it was significantly down-regulated.Even in response to 7 d excess Fe stress,the transcript abundances of OsIRO2 and OsNAS3 were contrasting in genotypes Shasharang and KMR3.This suggested that the reported Fe deficiency genes had a role in Fe toxicity and that in genotype KMR3 under excess Fe stress,there was disruption of metal homeostasis.Under the 48 h low P conditions,OsIRO2 and OsYSL16 were significantly up-regulated in Fe tolerant genotype Shasharang and in low P tolerant genotype Chakhao Poirieton,respectively.In silico sequence analysis across 3 024 rice genotypes revealed polymorphism for 4 genes.Sequencing across OsIRO3and OsNAS3 revealed nucleotide polymorphism between tolerant and susceptible genotypes for Fe toxicity.Non-synonymous single nucleotide polymorphisms and insertion/deletions(InDels) differing in tolerant and susceptible genotypes were identified.A marker targeting 25-bp InDel in OsIRO3,when run on a diverse panel of 43 rice genotypes and a biparental population,was associated with superior performance for yield under acidic lowland field conditions.This study highlights the potential of one of the vital genes involved in Fe homeostasis as a genic target for improving rice yield in acidic soils. 展开更多
关键词 acidic soil low phosphorus iron toxicity OsNAS1 OsIRO3 RICE YIELD
下载PDF
Effects of Microbial Fertilizers in Improving Acidic Tobacco-planting Soil and Tobacco Leaf Quality
16
作者 Xia NI Shungang SHEN +13 位作者 Xianyi ZENG Dewen LI Yeming FU Min CHEN Chaokai YU Libing QI Ying-guo RUAN Changchong ZI Haohan GONG Guangjun HU Mengsheng ZHANG Xu ZHANG Shu PENG Hongbing LI 《Agricultural Biotechnology》 CAS 2023年第2期67-72,共6页
[Objectives]This study was conducted to improve acidic soil and enhance the quality of tobacco leaves.[Methods]The effects of different microbial fertilizers on improving acidic tobacco-planting soil and tobacco leaf ... [Objectives]This study was conducted to improve acidic soil and enhance the quality of tobacco leaves.[Methods]The effects of different microbial fertilizers on improving acidic tobacco-planting soil and tobacco leaf quality were investigated through plot experiments.[Results]The application of microbial fertilizers could improve the pH value of acidic soil,and composite microbial agent A showed the best application effect.The application of bio-organic fertilizer was beneficial to improving the contents of available phosphorus and available boron in acidic soil.The application of composite microbial agent A was beneficial to improving the contents of available phosphorus and available potassium in acidic soil,and could promote the growth of tobacco plants and improve the economic traits of flue-cured tobacco and the coordination of chemical components in tobacco leaves.The application of composite microbial agent B led to a downward trend in the content of available boron in acidic soil.The application of composite microbial agent B could promote the absorption of nutrients by tobacco plants,and improve their disease resistance and the quality of tobacco leaves.Due to the differences in functional microorganisms contained,the application effects of different microbial fertilizers in improving acidic tobacco-planting soil and improving tobacco leaf quality varied.Overall,the application of microbial fertilizers could increase soil pH,activate soil nutrients,promote tobacco growth,enhance disease resistance,increase tobacco output value,and improve tobacco quality.Microbial fertilizers have good application prospects in improving acidic soil and improving tobacco quality.[Conclusions]The application of microbial fertilizers to improve acidic tobacco-planting soil can ensure the normal growth and development of tobacco plants and the improvement of tobacco leaf quality,achieving high-quality and sustainable development of Zhaotong tobacco. 展开更多
关键词 Microbial fertilizer Flue-cured tobacco acidic soil Tobacco quality
下载PDF
Geogenic Pollution of Groundwater Quality in Gampaha District, Sri Lanka: A Case Study of Groundwater Acidification from Rathupaswala
17
作者 Ishara Pathirage Anushka Upamali Rajapaksha +1 位作者 S. P. Sucharitha Bandara G. W. A. Rohan Fernando 《International Journal of Geosciences》 CAS 2024年第8期590-604,共15页
Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community... Over recent decades, Gampaha district, Sri Lanka, has experienced significant urbanisation and industrial growth, increasing groundwater demand due to limited and polluted surface water resources. In 2013, a community uprising in Rathupaswala, a village in Gampaha district, accused a latex glove manufacturing factory of causing groundwater acidity (pH < 4). This study evaluates the spatial and temporal changes in geochemical parameters across three transects in the southern part of Gampaha district to 1) assess the impact of geological formations on groundwater;2) compare temporal variations in groundwater;and 3) explain acidification via a geochemical model. Seventy-two sample locations were tested for pH, electrical conductivity (EC), and anion concentrations (sulphate, nitrate, chloride and fluoride). Depth to the water table and distance from the sea were measured to study variations across sandy, peaty, lateritic, and crystalline aquifers. Results showed pH readings around 7 for sandy and crystalline aquifers, below 7 for peaty aquifers, and below 5 for lateritic aquifers, with significant water table fluctuations near Rathupaswala area. Principal component analysis revealed three principal components (PCs) explaining 86.0% of the variance. PC1 (40.6%) correlated with pH, EC, and sulphate (saltwater intrusion), while PC2 (32.0%) correlated with nitrates and depth to the water table (anthropogenic nutrient pollution). A geochemical transport model indicated a cone of depression recharged by acidic groundwater from peat-soil aquifers, leading to acidic groundwater in Rathupaswala area. Previous attributions of acidic pH to the over-exploitation of groundwater by the latex factory have been reevaluated;the results suggest natural acidification from prolonged water-rock interactions with iron-rich lateritic aquifers. Groundwater pH is influenced by local climate, geology, topography, and drainage systems. It is recommended that similar water-rock interaction conditions may be present throughout the wet zone of Sri Lanka, warranting detailed studies to confirm this hypothesis. 展开更多
关键词 Groundwater acidification acid Sulphate soils (AAS) Ion Chromatography Groundwater Quality
下载PDF
Calcium-Magnesium Ca/Mg Ratios and Their Agronomic Implications for the Optimization of Phosphate Fertilization in Rainfed Rice Farming on Acidic Ferralsol in the Forest Zone of Ivory Coast
18
作者 Fernand G. Yao Brahima Kone +7 位作者 Franck M. L. Bahan Kouadio Amani Jean L. Essehi Mamadou B. Ouattara Konan E. B. Dibi Brou Kouame François Lompo Albert Yao-Kouame 《Open Journal of Soil Science》 2024年第1期81-96,共16页
This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosph... This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire. 展开更多
关键词 soil acidity Ca/Mg Ratios Phosphate Fertilization Rice Growing Ivory Coast
下载PDF
The Preliminary Study on Screening and Application of Phthalic Acid-Degrading Bacteria
19
作者 Honghao Zhang Lin Yang +3 位作者 Rubing Xu Yuxiao Sun Yong Yang Yanyan Li 《Advances in Microbiology》 CAS 2024年第4期226-239,共14页
Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect ... Phthalic acid is a main pollutant, which is also an important reason for the continuous cropping effect of tobacco. In order to degrade the phthalic acid accumulated in the environment and relieve the obstacle effect of tobacco continuous cropping caused by the accumulation of phthalic acid in the soil. In this study, phthalate degrading bacteria B3 is screened from continuous cropping tobacco soil. The results of biochemical identification and 16sDNA comparison show that the homology between degrading bacterium B3 and Enterobacter sp. is 99%. At the same time, the growth of Enterobacter hormaechei subsp. B3 and the degradation of phthalic acid under different environmental conditions are studied. The results show that the environment with a temperature of 30˚C, PH of 7, and inoculation amount of not less than 1.2%, which is the optimal growth conditions for Enterobacter sp. B3. In an environment with a concentration of phthalic acid not exceeding 500 mg/L, Enterobacter sp. B3 has a better effect on phthalic acid degradation, and the degradation rate can reach 77% in 7 d. The results of indoor potting experiments on tobacco show that the degradation rate of phthalic acid by Enterobacter B3 in the soil is about 45%, which can reduce the inhibitory effect of phthalic acid on the growth of tobacco seedlings. This study enriches the microbial resources for degrading phthalic acid and provides a theoretical basis for alleviating tobacco continuous cropping obstacles. 展开更多
关键词 Phthalic acid Degrading Bacteria Rhizosphere soil
下载PDF
Role of Low-Molecule-Weight Organic Acids and Their Salts in Regulating Soil pH 被引量:6
20
作者 LI Zhi-An ZOU Bi XIA Han-Ping DING Yong-Zhen TAN Wan-Neng FU Sheng-Lei 《Pedosphere》 SCIE CAS CSCD 2008年第2期137-148,共12页
The process of organic materials increasing soil pH has not yet been fully understood. This study examined the role of cations and organic anions in regulating soil pH using organic compounds. Calcareous soil, acid so... The process of organic materials increasing soil pH has not yet been fully understood. This study examined the role of cations and organic anions in regulating soil pH using organic compounds. Calcareous soil, acid soil, and paddy soil were incubated with different simple organic compounds, pH was determined periodically and CO2 emission was also measured. Mixing organic acids with the soil caused an instant decrease of soil pH. The magnitude of pH decrease depended on the initial soil acidity and dissociation degree of the acids. Decomposition of organic acids could only recover the soil pH to about its original level. Mixing organic salts with soil caused an instant increase of soil pH. Decomposition of organic salts of sodium resulted in a steady increase of soil pH, with final soil pH being about 2.7-3.2 pH units over the control. Organic salts with the same anions (citrate) but different cations led to different magnitudes of pH increase, while those having the same cations but different anions led to very similar pH increases. Organic salts of sodium and sodium carbonate caused very similar pH increases of soil when they were added to the acid soil at equimolar concentrations of Na^+. The results suggested that cations played a central role in regulating soil pH. Decarboxylation might only consume a limited number of protons. Conversion of organic salts into inorganic salts (carbonate) was possibly responsible for pH increase during their decomposition, suggesting that only those plant residues containing high excess base cations could actually increase soil pH. 展开更多
关键词 acid soil CATION DECARBOXYLATION organic compounds soil acidity
下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部