As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres...As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.展开更多
In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-lo...In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.展开更多
To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. Th...To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.展开更多
The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital...The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.展开更多
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa...The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.展开更多
The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the ...The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the DBD plasma control technology and hot-wire anemometer velocity measurements,a novel convenient method of local drag reduction(DR)measurement is proposed by measuring the single-point velocity within the linear region of the viscous sublayer.We analyze the premise of using the method,and the maximum effective measurement range of-73.1%<DR<42.2%is obtained according to the experimental environment in this work.The local drag decreases downstream of the center of two adjacent upper electrodes and increases downstream of the upper electrodes.The magnitude of the local DR increases with increasing voltage and decreases as it moves away from the actuators.For the spanwise position in between,the streamwise distribution of the local DR is very dependent on the voltage.The variable-interval time-average detection results reveal that all bursting intensities are reduced compared to the baseline,and the amount of reduction is comparable to the absolute values of the local DR.Compared with previous results,we infer that the control mechanism is that many meandering streaks are combined together into single stabilized streaks.展开更多
In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it...In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.展开更多
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron...This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.展开更多
Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely co...Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively.展开更多
Over the years, there has been increased research interest in the application of Nitinol as an actuator, due to its shape memory behaviour, simplicity, high power-to-weight ratio, compactness, and extreme high fatigue...Over the years, there has been increased research interest in the application of Nitinol as an actuator, due to its shape memory behaviour, simplicity, high power-to-weight ratio, compactness, and extreme high fatigue resistance to cyclic motion, and noiseless operation. Nitinol has found application in tactile displays which reproduce tactile parameters such as texture and shape, depending on the application. This paper presents the effects of thermal interference between adjacent Nitinol spring actuators in a tactile display. The tactile display is made of a 3 by 3 pin array whose spatial resolution was varied from 4 mm to 6 mm in steps of 1 mm while a current of 1.5 A was used to actuate 8 of the springs, and the centre spring was left unactivated to observe the thermal effects on it due to the heat gradient formed. A Finite Element (FE) model was developed using COMSOL Multiphysics and the results were further verified through experimentation. In both cases, there was visible thermal interference between actuators. The increase in spatial resolution saw a decrease in thermal interference by 12.7%. Using a fan to introduce forced convection, reduced the thermal interference in the simulation by 20% and during experimentation by 11%. The results of this research indicate a spatial resolution of 6 mm reduced the thermal inference to a negligible rate. However, thermal interference could not be eliminated with these two methods.展开更多
A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The elemen...A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.展开更多
Due to the limited output capability of piezoelectric diaphragm pumps, the driving voltage is frequently increased to obtain the desired output. However, the excessive voltage application may lead to a large deformati...Due to the limited output capability of piezoelectric diaphragm pumps, the driving voltage is frequently increased to obtain the desired output. However, the excessive voltage application may lead to a large deformation in the piezoelectric ceramics, which could cause it to breakdown or become damaged. Therefore, increasing the number of chambers to obtain the desired output is proposed. Using a check-valve quintuple-chamber pump with quintuple piezoelectric actuators, the characteristics of the pump under different driving modes are investigated through experiments. By changing the number and connection mode of working actuators, pump performances in terms of flow rate and backpressure are tested at a voltage of 150 V with a frequency range of 60 Hz -400 Hz. Experiment results indicate that the properties of the multiple-chamber pump change significantly with distinct working chambers even though the number of pumping chambers is the same. Pump performance declines as the distance between the working actuators increases. Moreover, pump performance declines dramatically when the working piezoelectric actuator closest to the outlet is involved. The maximum backpressures of the pump with triple, quadruple, and quintuple actuators are increased by 39%, 83%, and 128%, respectively, compared with the pump with double working actuators; the corresponding maximum flow rates of the pumps are simply increased by 25.9%, 49.2%, and 67.8%, respectively. The proposed research offers practical guidance for the effective utilization of the multiple-chamber pumps under different driving modes.展开更多
The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a pi...The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.展开更多
In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using n...In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.展开更多
A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections. This paper addresses the controllability aspect in w...A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections. This paper addresses the controllability aspect in wireless vibration control of plate structures via photostrictive actuators. A modal force index, which has taken into account the mode number, the spatial distribution, and the dimension of the actuator, is chosen as an objective function to determine the optimal locations of photostrictive actuators. A linear methodology is proposed in this paper and the vibration equation is written in the standard state-space form. A binary-coded GA based combined optimal placement and LQR (linear quadratic regulator) control scheme has been incorporated, which maximizes the modal force index, the closed loop damping and minimizes input light intensity to the actuators. In the present method only three weighting factors have been used to search optimal Q and R matrices using GA, which reduces chromosome length and hence minimizes computational time. Numerical results demonstrate that the use of strategically positioned actuator patches can effectively control the fundamental modes that dominate the structural vibration.展开更多
This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response,...This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response, and non-linear behavior, which make them difficult to control. The fast response of the SMA actuator mostly depends upon, (1) type of controller, (2) rate of addition and removal of heat, and (3) shape or form of the actuator. Though linear controllers are more desirable than nonlinear ones, the review of literature shows that the results obtained using nonlinear controllers were far better than the former one. Therefore, more emphasis is made on the nonlinear control technologies taking into account the intelligent controllers. Various forms of SMA actuator along with different heating and cooling methods are presented in this review, followed by the nonlinear control methods and the control problems encountered by the researchers.展开更多
Lead zirconate titanium solid-solution (PZT) thin films with variousthickness are synthesized on titanium substrates by repeated hydrothermal treatments. Young modulus,electric-field-induced displacement and the densi...Lead zirconate titanium solid-solution (PZT) thin films with variousthickness are synthesized on titanium substrates by repeated hydrothermal treatments. Young modulus,electric-field-induced displacement and the density of the PZT film are measured respectively.Bimorph- type bending actuators are fabricated using these films. The model, which is used toanalyze the driving ability of bimorph-type bending actuators by hydrothermal method, is set up. Itcan be seen that the driving ability of bimorph-type bending actuators can be greatly improved byoptimizing the thickness of PZT thin film and substrate from the theoretical analysis results. Themeasured values are expected to agree with the theoretical values calculated by the above model.展开更多
In vibration active control of composite structures, piezoelectricsensors/actuators are usually bonded to the surface of a host structure. Debonding of piezoelectricsensors/actuators can result in significant changes ...In vibration active control of composite structures, piezoelectricsensors/actuators are usually bonded to the surface of a host structure. Debonding of piezoelectricsensors/actuators can result in significant changes to the static and dynamic response. In thepresent paper, an novel Enhanced Assumed Strain(EAS) piezoelectric solid element formulation isdeveloped for vibration active control of laminated structures bonded with piezoelectric sensors andactuators. Unlike the conventional brick elements, the present formulation is very reliable, moreaccurate, and computationally efficient and can be used to model the response of shell structuresbesides thin plates. Delaminations are modeled by pairs of nodes with the same coordinates butdifferent node numbers, and numerical results demonstrate the performance of the element and theglobal and local effects of debonding sensors/actuators on the dynamics of the adaptive laminates.展开更多
Piezoelectric actuators (PEAs) have been widely used in micro- and nanopositioning applications due to their fine resolution, fast responses, and large actuating forces. However, the existence of nonlinearities such a...Piezoelectric actuators (PEAs) have been widely used in micro- and nanopositioning applications due to their fine resolution, fast responses, and large actuating forces. However, the existence of nonlinearities such as hysteresis makes modeling and control of PEAs challenging. This paper reviews the recent achievements in modeling and control of piezoelectric actuators. Specifically, various methods for modeling linear and nonlinear behaviors of PEAs, including vibration dynamics, hysteresis, and creep, are examined;and the issues involved are identified. In the control of PEAs as applied to positioning, a review of various control schemes of both model-based and non-model-based is presented along with their limitations. The challenges associated with the control problem are also discussed. This paper is concluded with the emerging issues identified in modeling and control of PEAs for future research.展开更多
基金financial supports from the National Natural Science Foundation of China(No.61975173)the Key Research and Development Project of Zhejiang Province(No.2022C03103,2023C01045).
文摘As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented.
文摘In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.
基金supported by National Natural Science Foundation of China (Nos.12002384, U2341277,and 52025064)Foundation Strengthening Program (No.2021JJ-0786)。
文摘To improve the cruise flight performance of aircraft, two new configurations of plasma actuators(grid-type and super-dense array) were investigated to reduce the turbulent skin friction drag of a low-speed airfoil. The induced jet characteristics of the two actuators in quiescent air were diagnosed with high-speed particle image velocimetry(PIV), and their drag reduction efficiencies were examined under different operating conditions in a wind tunnel. The results showed that the grid-type plasma actuator was capable of producing a wall-normal jet array(peak magnitude: 1.07 m/s) similar to that generated in a micro-blowing technique, while the superdense array plasma actuator created a wavy wall-parallel jet(magnitude: 0.94 m/s) due to the discrete spanwise electrostatic forces. Under a comparable electrical power consumption level,the super-dense array plasma actuator array significantly outperformed the grid-type configuration,reducing the total airfoil friction drag by approximately 22% at a free-stream velocity of 20 m/s.The magnitude of drag reduction was proportional to the dimensionless jet velocity ratio(r), and a threshold r = 0.014 existed under which little impact on airfoil drag could be discerned.
基金This research was supported by the European Union’s‘Shift2Rail’through No.826255 for the project IN2TRACK2:Research into enhanced track and switch and crossing system 2
文摘The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
基金partially supported by the National Natural Science Foundation of China(62322307)Sichuan Science and Technology Program,China(2023NSFSC1968).
文摘The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.
基金the financial support received from the National Science Fund for Distinguished Young Scholars(No.12102359)。
文摘The flat-plate turbulent boundary layer at Reτ=1140 is manipulated using a spanwise array of bidirectional dielectric barrier discharge(DBD)plasma actuators.Based on the features of no moving mechanical parts in the DBD plasma control technology and hot-wire anemometer velocity measurements,a novel convenient method of local drag reduction(DR)measurement is proposed by measuring the single-point velocity within the linear region of the viscous sublayer.We analyze the premise of using the method,and the maximum effective measurement range of-73.1%<DR<42.2%is obtained according to the experimental environment in this work.The local drag decreases downstream of the center of two adjacent upper electrodes and increases downstream of the upper electrodes.The magnitude of the local DR increases with increasing voltage and decreases as it moves away from the actuators.For the spanwise position in between,the streamwise distribution of the local DR is very dependent on the voltage.The variable-interval time-average detection results reveal that all bursting intensities are reduced compared to the baseline,and the amount of reduction is comparable to the absolute values of the local DR.Compared with previous results,we infer that the control mechanism is that many meandering streaks are combined together into single stabilized streaks.
基金supported by the National Natural Science Foundation of China(Nos.51973155,52173181,and 52173262)Jiangsu Innovation Team Program,Natural Science Foundation of Tianjin(20JCYBJC00810).
文摘In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.
基金supported by the Japan Society for the Promotion of Science under KAKENHI Grant Nos.19F19379 and 20H04199。
文摘This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.
基金supported by Research Foundation funded by Thu Dau Mot University。
文摘Electro-hydraulic actuators(EHA)have recently played a significant role in modern industrial applications,especially in systems requiring extremely high precision.This can be explained by EHA’s ability to precisely control the position and force through advanced sensors and innovative control algorithms.One of the promising approaches to improve control accuracy for EHA systems is applying classical to modern control algorithms,in which the proportional–inte-gral–derivative(PID)algorithm,fuzzy logic controller,and a hybrid of these methods are popular options.In this paper,we developed a novel version of the fuzzy control algorithm and linear feedback control method,namely fuzzy lin-ear feedback control,to improve the control performance.To achieve the highest performance,wefirst designed a mathematical EHA model based on the Matlab/Simulink software packages thanks to the selected parameters,which are similar to a real EHA system.Then,we respectively applied PID,fuzzy PID(FPID),and fuzzy linear feedback control(FLFC)before comparing them to have a full view of the outstanding advantages of the proposed algorithm.The simulation results showed that the proposed FLFC algorithm is approximately 99%and 77%super-ior in performance to the PID and feedback control algorithms,respectively.
文摘Over the years, there has been increased research interest in the application of Nitinol as an actuator, due to its shape memory behaviour, simplicity, high power-to-weight ratio, compactness, and extreme high fatigue resistance to cyclic motion, and noiseless operation. Nitinol has found application in tactile displays which reproduce tactile parameters such as texture and shape, depending on the application. This paper presents the effects of thermal interference between adjacent Nitinol spring actuators in a tactile display. The tactile display is made of a 3 by 3 pin array whose spatial resolution was varied from 4 mm to 6 mm in steps of 1 mm while a current of 1.5 A was used to actuate 8 of the springs, and the centre spring was left unactivated to observe the thermal effects on it due to the heat gradient formed. A Finite Element (FE) model was developed using COMSOL Multiphysics and the results were further verified through experimentation. In both cases, there was visible thermal interference between actuators. The increase in spatial resolution saw a decrease in thermal interference by 12.7%. Using a fan to introduce forced convection, reduced the thermal interference in the simulation by 20% and during experimentation by 11%. The results of this research indicate a spatial resolution of 6 mm reduced the thermal inference to a negligible rate. However, thermal interference could not be eliminated with these two methods.
文摘A rectangular finite element for laminated plate with bonded and/or embedded piezoelectric sensors and actuators is developed based on the variational principle and the first order shear deformation theory. The element has four-node, 20-degrees-of-freedom with one potential degree of freedom for each piezoelectric layer to represent the piezoelectric behavior. The higher order derivation of deflection is obtained by using the normal rotation expressions to take the effects of transverse shear deformation into considerations. The finite element can accurately simulate the deformation of both thin and moderately thick plates. A Fortran program is written and a number of benchmark tests are exercised to verify its effectiveness. Results are compared well with the existing data. The unbalanced composite with piezoelectric layers is then analyzed by using the model. Results show that the changes of the ratio between the thickness of positive angle layers and the negative angle layers have an effect on the deformation of the structure under the same electric loading.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205366,51205367,51377147)Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ13E050007)
文摘Due to the limited output capability of piezoelectric diaphragm pumps, the driving voltage is frequently increased to obtain the desired output. However, the excessive voltage application may lead to a large deformation in the piezoelectric ceramics, which could cause it to breakdown or become damaged. Therefore, increasing the number of chambers to obtain the desired output is proposed. Using a check-valve quintuple-chamber pump with quintuple piezoelectric actuators, the characteristics of the pump under different driving modes are investigated through experiments. By changing the number and connection mode of working actuators, pump performances in terms of flow rate and backpressure are tested at a voltage of 150 V with a frequency range of 60 Hz -400 Hz. Experiment results indicate that the properties of the multiple-chamber pump change significantly with distinct working chambers even though the number of pumping chambers is the same. Pump performance declines as the distance between the working actuators increases. Moreover, pump performance declines dramatically when the working piezoelectric actuator closest to the outlet is involved. The maximum backpressures of the pump with triple, quadruple, and quintuple actuators are increased by 39%, 83%, and 128%, respectively, compared with the pump with double working actuators; the corresponding maximum flow rates of the pumps are simply increased by 25.9%, 49.2%, and 67.8%, respectively. The proposed research offers practical guidance for the effective utilization of the multiple-chamber pumps under different driving modes.
基金The National Natural Science Foundation of China(No.10772086,10772085)
文摘The nonlinear static characteristic of a piezoelectric unimorph cantilever micro actuator driven by a strong applied electric field is studied based on the couple stress theory.The cantilever actuator consists of a piezoelectric layer,a passive(elastic)layer and two electrode layers.First,the nonlinear static characteristic of the actuator caused by the electrostriction of the piezoelectric layer under a strong applied electric field is analyzed using the Rayleigh-Ritz method.Secondly,since the thickness of the cantilever beam is in micro scale and there exists a size effect,the size dependence of the deformation behavior is evaluated using the couple stress theory.The results show that the nonlinearities of the beam deflection increase along with the increase of the applied electric field which means that softening of the micro beam rigidity exists when a strong external electric field is applied.Meanwhile,the optimal value of the thickness ratio for the passive layer and the piezoelectric layer is not around 1.0 which is usually adopted by some previous researchers.Since there exists a size effect of the micro beam deflection,the optimal value of this thickness ratio should be greater than 1.0 in micro scale.
基金supported by National Natural Science Foundation of China(61807016)Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18-1859)。
文摘In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using non-collocated sensors and actuators. Then, a closed-loop PD-type ILC algorithm is extended to a class of distributed parameter systems with a non-collocated single sensor and m actuators when the initial states of the system exist some errors. Under some given assumptions, the convergence conditions of output errors for the systems can be obtained. Finally, one numerical example for a distributed parameter system with a single sensor and two actuators is presented to illustrate the effectiveness of the proposed ILC schemes.
基金National Natural Science Foundation Under Grant No.10872090 & 50830201NUAA Research Funding Under Grant No.NJ2010011
文摘A photostrictive type of opto-electromechanical actuator activated by high-energy lights can introduce actuation and control effects without hard-wired connections. This paper addresses the controllability aspect in wireless vibration control of plate structures via photostrictive actuators. A modal force index, which has taken into account the mode number, the spatial distribution, and the dimension of the actuator, is chosen as an objective function to determine the optimal locations of photostrictive actuators. A linear methodology is proposed in this paper and the vibration equation is written in the standard state-space form. A binary-coded GA based combined optimal placement and LQR (linear quadratic regulator) control scheme has been incorporated, which maximizes the modal force index, the closed loop damping and minimizes input light intensity to the actuators. In the present method only three weighting factors have been used to search optimal Q and R matrices using GA, which reduces chromosome length and hence minimizes computational time. Numerical results demonstrate that the use of strategically positioned actuator patches can effectively control the fundamental modes that dominate the structural vibration.
文摘This paper reviews recent developments in nonlinear control technologies for shape memory alloy (SMA) actuators in robotics and their related applications. SMA possesses large hysteresis, low bandwidth, slow response, and non-linear behavior, which make them difficult to control. The fast response of the SMA actuator mostly depends upon, (1) type of controller, (2) rate of addition and removal of heat, and (3) shape or form of the actuator. Though linear controllers are more desirable than nonlinear ones, the review of literature shows that the results obtained using nonlinear controllers were far better than the former one. Therefore, more emphasis is made on the nonlinear control technologies taking into account the intelligent controllers. Various forms of SMA actuator along with different heating and cooling methods are presented in this review, followed by the nonlinear control methods and the control problems encountered by the researchers.
基金This project is supported by National Natural Science Foundation of China(No.90207003) and Returnee Foundation of Dalian.
文摘Lead zirconate titanium solid-solution (PZT) thin films with variousthickness are synthesized on titanium substrates by repeated hydrothermal treatments. Young modulus,electric-field-induced displacement and the density of the PZT film are measured respectively.Bimorph- type bending actuators are fabricated using these films. The model, which is used toanalyze the driving ability of bimorph-type bending actuators by hydrothermal method, is set up. Itcan be seen that the driving ability of bimorph-type bending actuators can be greatly improved byoptimizing the thickness of PZT thin film and substrate from the theoretical analysis results. Themeasured values are expected to agree with the theoretical values calculated by the above model.
文摘In vibration active control of composite structures, piezoelectricsensors/actuators are usually bonded to the surface of a host structure. Debonding of piezoelectricsensors/actuators can result in significant changes to the static and dynamic response. In thepresent paper, an novel Enhanced Assumed Strain(EAS) piezoelectric solid element formulation isdeveloped for vibration active control of laminated structures bonded with piezoelectric sensors andactuators. Unlike the conventional brick elements, the present formulation is very reliable, moreaccurate, and computationally efficient and can be used to model the response of shell structuresbesides thin plates. Delaminations are modeled by pairs of nodes with the same coordinates butdifferent node numbers, and numerical results demonstrate the performance of the element and theglobal and local effects of debonding sensors/actuators on the dynamics of the adaptive laminates.
文摘Piezoelectric actuators (PEAs) have been widely used in micro- and nanopositioning applications due to their fine resolution, fast responses, and large actuating forces. However, the existence of nonlinearities such as hysteresis makes modeling and control of PEAs challenging. This paper reviews the recent achievements in modeling and control of piezoelectric actuators. Specifically, various methods for modeling linear and nonlinear behaviors of PEAs, including vibration dynamics, hysteresis, and creep, are examined;and the issues involved are identified. In the control of PEAs as applied to positioning, a review of various control schemes of both model-based and non-model-based is presented along with their limitations. The challenges associated with the control problem are also discussed. This paper is concluded with the emerging issues identified in modeling and control of PEAs for future research.