期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
1
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
下载PDF
Adaptive Particle Swarm Optimization Data Hiding for High Security Secret Image Sharing
2
作者 S.Lakshmi Narayanan 《Computer Systems Science & Engineering》 SCIE EI 2022年第12期931-946,共16页
The main aim of this work is to improve the security of data hiding forsecret image sharing. The privacy and security of digital information have becomea primary concern nowadays due to the enormous usage of digital t... The main aim of this work is to improve the security of data hiding forsecret image sharing. The privacy and security of digital information have becomea primary concern nowadays due to the enormous usage of digital technology.The security and the privacy of users’ images are ensured through reversible datahiding techniques. The efficiency of the existing data hiding techniques did notprovide optimum performance with multiple end nodes. These issues are solvedby using Separable Data Hiding and Adaptive Particle Swarm Optimization(SDHAPSO) algorithm to attain optimal performance. Image encryption, dataembedding, data extraction/image recovery are the main phases of the proposedapproach. DFT is generally used to extract the transform coefficient matrix fromthe original image. DFT coefficients are in float format, which assists in transforming the image to integral format using the round function. After obtainingthe encrypted image by data-hider, additional data embedding is formulated intohigh-frequency coefficients. The proposed SDHAPSO is mainly utilized for performance improvement through optimal pixel location selection within the imagefor secret bits concealment. In addition, the secret data embedding capacityenhancement is focused on image visual quality maintenance. Hence, it isobserved from the simulation results that the proposed SDHAPSO techniqueoffers high-level security outcomes with respect to higher PSNR, security level,lesser MSE and higher correlation than existing techniques. Hence, enhancedsensitive information protection is attained, which improves the overall systemperformance. 展开更多
关键词 Image sharing separable data hiding using adaptive particle swarm optimization(SDHAPSO) SECURITY access control
下载PDF
Prediction model for permeability index by integrating case-based reasoning with adaptive particle swarm optimization
3
作者 朱红求 《High Technology Letters》 EI CAS 2009年第3期267-271,共5页
To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle ... To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive par- ticle swarm optimization (PSO). The nmnber of nearest neighbors and the weighted features vector are optimized online using the adaptive PSO to improve the prediction accuracy of CBR. The adaptive inertia weight and mutation operation are used to overcome the premature convergence of the PSO. The proposed method is validated a compared with the basic weighted CBR. The results show that the proposed model has higher prediction accuracy and better performance than the basic CBR model. 展开更多
关键词 lead and zinc smelting permeability index prediction case-based reasoning (CBR) adaptive particle swarm optimization (PS0)
下载PDF
ECGID:a human identification method based on adaptive particle swarm optimization and the bidirectional LSTM model 被引量:2
4
作者 Yefei ZHANG Zhidong ZHAO +2 位作者 Yanjun DENG Xiaohong ZHANG Yu ZHANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2021年第12期1641-1654,共14页
Physiological signal based biometric analysis has recently attracted attention as a means of meeting increasing privacy and security requirements.The real-time nature of an electrocardiogram(ECG)and the hidden nature ... Physiological signal based biometric analysis has recently attracted attention as a means of meeting increasing privacy and security requirements.The real-time nature of an electrocardiogram(ECG)and the hidden nature of the information make it highly resistant to attacks.This paper focuses on three major bottlenecks of existing deep learning driven approaches:the lengthy time requirements for optimizing the hyperparameters,the slow and computationally intense identification process,and the unstable and complicated nature of ECG acquisition.We present a novel deep neural network framework for learning human identification feature representations directly from ECG time series.The proposed framework integrates deep bidirectional long short-term memory(BLSTM)and adaptive particle swarm optimization(APSO).The overall approach not only avoids the inefficient and experience-dependent search for hyperparameters,but also fully exploits the spatial information of ordinal local features and the memory characteristics of a recognition algorithm.The effectiveness of the proposed approach is thoroughly evaluated in two ECG datasets,using two protocols,simulating the influence of electrode placement and acquisition sessions in identification.Comparing four recurrent neural network structures and four classical machine learning and deep learning algorithms,we prove the superiority of the proposed algorithm in minimizing overfitting and self-learning of time series.The experimental results demonstrated an average identification rate of 97.71%,99.41%,and 98.89% in training,validation,and test sets,respectively.Thus,this study proves that the application of APSO and LSTM techniques to biometric human identification can achieve a lower algorithm engineering effort and higher capacity for generalization. 展开更多
关键词 ECG biometrics Human identification Long short-term memory(LSTM) adaptive particle swarm optimization(APSO)
原文传递
A New Clustering Algorithm Using Adaptive Discrete Particle Swarm Optimization in Wireless Sensor Network 被引量:3
5
作者 余朝龙 郭文忠 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期19-22,共4页
Wireless sensor networks (WSNs) are mainly characterized by their limited and non-replenishable energy supply. Hence, the energy efficiency of the infrastructure greatly affects the network lifetime. Clustering is one... Wireless sensor networks (WSNs) are mainly characterized by their limited and non-replenishable energy supply. Hence, the energy efficiency of the infrastructure greatly affects the network lifetime. Clustering is one of the methods that can expand the lifespan of the whole network by grouping the sensor nodes according to some criteria and choosing the appropriate cluster heads(CHs). The balanced load of the CHs has an important effect on the energy consumption balancing and lifespan of the whole network. Therefore, a new CHs election method is proposed using an adaptive discrete particle swarm optimization (ADPSO) algorithm with a fitness value function considering the load balancing and energy consumption. Simulation results not only demonstrate that the proposed algorithm can have better performance in load balancing than low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), and dynamic clustering algorithm with balanced load (DCBL), but also imply that the proposed algorithm can extend the network lifetime more. 展开更多
关键词 load balancing energy consumption balancing cluster head(CH) adaptive discrete particle swarm optimization (ADPSO)
下载PDF
Quantum particle swarm optimization for micro-grid system with consideration of consumer satisfaction and benefit of generation side
6
作者 LU Xiaojuan CAO Kai GAO Yunbo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期83-92,共10页
Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of... Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery. 展开更多
关键词 micro-grid system consumer satisfaction benefit of power generation side time-of-use electricity price multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)
下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
7
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
下载PDF
Adaptive particle swarm optimized fuzzy algorithm to predict water table elevation
8
作者 Dinesh C.S.Bisht Shilpa Jain Pankaj Kumar Srivastava 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2019年第6期48-56,共9页
This study helps to select the length for fuzzy sets in fuzzy time series prediction.In order to examine the effect of intervals and evaluate the efficiency of the proposed algorithm,numerical data of water recharge a... This study helps to select the length for fuzzy sets in fuzzy time series prediction.In order to examine the effect of intervals and evaluate the efficiency of the proposed algorithm,numerical data of water recharge and discharge are considered to predict water table elevation fluctuation(WTEF).Particle swarm optimization(PSO)is an influential tool to handle optimization of multi-model problems,whereas fuzzy logic can handle uncertainty.In this paper,adaptive inertia weights are adopted rather than static inertia weights for PSO,which further improves efficiency of PSO.This modified PSO is termed as adaptive particle swarm optimization(APSO).APSO optimizes the intervals and these intervals are further used to generate fuzzy sets for prediction.The results indicate that the APSO performs better than PSO and genetic algorithm approaches for the same problem. 展开更多
关键词 swarm intelligence optimization fuzzy logic water table adaptive particle swarm optimization fuzzy inference system
原文传递
APSO-CNN-SE:An Adaptive Convolutional Neural Network Approach for IoT Intrusion Detection
9
作者 Yunfei Ban Damin Zhang +1 位作者 Qing He Qianwen Shen 《Computers, Materials & Continua》 SCIE EI 2024年第10期567-601,共35页
The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things(IoT)networks.The proliferation of unknown attacks and related risks,such as zero-day attacks and Distributed... The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things(IoT)networks.The proliferation of unknown attacks and related risks,such as zero-day attacks and Distributed Denial of Service(DDoS)attacks triggered by botnets,have resulted in information leakage and property damage.Therefore,developing an efficient and realistic intrusion detection system(IDS)is critical for ensuring IoT network security.In recent years,traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic,and the excellent performance of deep learning techniques,as an advanced version of machine learning,has led to their widespread application in intrusion detection.In this paper,we propose an Adaptive Particle Swarm Optimization Convolutional Neural Network Squeeze-andExcitation(APSO-CNN-SE)model for implementing IoT network intrusion detection.A 2D CNN backbone is initially constructed to extract spatial features from network traffic.Subsequently,a squeeze-and-excitation channel attention mechanism is introduced and embedded into the CNN to focus on critical feature channels.Lastly,the weights and biases in the CNN-SE are extracted to initialize the population individuals of the APSO.As the number of iterations increases,the population’s position vector is continuously updated,and the cross-entropy loss function value is minimized to produce the ideal network architecture.We evaluated the models experimentally using binary and multiclassification on the UNSW-NB15 and NSL-KDD datasets,comparing and analyzing the evaluation metrics derived from each model.Compared to the base CNN model,the results demonstrate that APSO-CNNSE enhances the binary classification detection accuracy by 1.84%and 3.53%and the multiclassification detection accuracy by 1.56%and 2.73%on the two datasets,respectively.Additionally,the model outperforms the existing models like DT,KNN,LR,SVM,LSTM,etc.,in terms of accuracy and fitting performance.This means that the model can identify potential attacks or anomalies more precisely,improving the overall security and stability of the IoT environment. 展开更多
关键词 Intrusion detection system internet of things convolutional neural network channel attention mechanism adaptive particle swarm optimization
下载PDF
Spectral transfer-learning-based metasurface design assisted by complex-valued deep neural network
10
作者 Yi Xu Fu Li +6 位作者 Jianqiang Gu Zhiwei Bi Bing Cao Quanlong Yang Jiaguang Han Qinghua Hu Weili Zhang 《Advanced Photonics Nexus》 2024年第2期8-17,共10页
Recently,deep learning has been used to establish the nonlinear and nonintuitive mapping between physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.However,to obtain su... Recently,deep learning has been used to establish the nonlinear and nonintuitive mapping between physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.However,to obtain sufficiently accurate predictions,the conventional deep-learning-based method consumes excessive time to collect the data set,thus hindering its wide application in this interdisciplinary field.We introduce a spectral transfer-learning-based metasurface design method to achieve excellent performance on a small data set with only 1000 samples in the target waveband by utilizing open-source data from another spectral range.We demonstrate three transfer strategies and experimentally quantify their performance,among which the“frozen-none”robustly improves the prediction accuracy by∼26%compared to direct learning.We propose to use a complex-valued deep neural network during the training process to further improve the spectral predicting precision by∼30%compared to its real-valued counterparts.We design several typical teraherz metadevices by employing a hybrid inverse model consolidating this trained target network and a global optimization algorithm.The simulated results successfully validate the capability of our approach.Our work provides a universal methodology for efficient and accurate metasurface design in arbitrary wavebands,which will pave the way toward the automated and mass production of metasurfaces. 展开更多
关键词 transfer learning complex-valued deep neural network metasurface inverse design conditioned adaptive particle swarm optimization terahertz
下载PDF
An intelligent approach for flight risk prediction under icing conditions
11
作者 Guozhi WANG Haojun XU Binbin PEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第6期109-127,共19页
Flight risk prediction is significant in improving the flight crew's situational awareness because it allows them to adopt appropriate operation strategies to prevent risk expansion caused by abnormal conditions,e... Flight risk prediction is significant in improving the flight crew's situational awareness because it allows them to adopt appropriate operation strategies to prevent risk expansion caused by abnormal conditions,especially aircraft icing conditions.The flight risk space representing the nonlinear mapping relations between risk degree and the three-dimensional commanded vector(commanded airspeed,commanded bank angle,and commanded vertical velocity)is developed to provide the crew with practical risk information.However,the construction of flight risk space by means of computational flight dynamics suffers from certain defects,including slow computing speed.Accordingly,an intelligent approach for flight risk prediction is proposed to address these defects based on neural networks.Radial Basis Function Neural Network(RBFNN)is optimized using Adaptive Particle Swarm Optimization(APSO).To optimize both the parameters and the structure of APSO-RBFNN,a fitness function containing the training accuracy and network structure size is proposed.Extensive experimental results demonstrate that the flight risk predicted by APSO-RBFNN is very close to that obtained via computational flight dynamics.The average error(RMSE)is less than 10^(-1).The approach achieves a speedup close to 1000x compared with computational flight dynamics.In addition,some flight upset and recovery cases are presented to illustrate the efficiency of the intelligent approach for flight risk prediction. 展开更多
关键词 adaptive particle swarm optimization(APSO) Flight risk assessment and prediction Flight risk space Icing conditions Radial Basis Function Neural Network(RBFNN)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部