In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggrega...In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggregation scheduling with guaran- teed lifetime and efficient latency in WSNs. We first Construct a Guaranteed Lifetime Mininmm Ra- dius Data Aggregation Tree (GLMRDAT) which is conducive to reduce scheduling latency while pro- viding a guaranteed network lifetime, and then de-sign a Greedy Scheduling algorithM (GSM) based on finding the nmzximum independent set in conflict graph to schedule he transmission of nodes in the aggregation tree. Finally, simulations show that our proposed approach not only outperfonm the state-of-the-art solutions in terms of schedule latency, but also provides longer and guaranteed network lifetilre.展开更多
基金This paper was supported by the National Basic Research Pro- gram of China (973 Program) under Crant No. 2011CB302903 the National Natural Science Foundation of China under Crants No. 60873231, No.61272084+3 种基金 the Natural Science Foundation of Jiangsu Province under Ca-ant No. BK2009426 the Innovation Project for Postgraduate Cultivation of Jiangsu Province under Crants No. CXZZ11_0402, No. CX10B195Z, No. CXLX11_0415, No. CXLXll 0416 the Natural Science Research Project of Jiangsu Education Department under Grant No. 09KJD510008 the Natural Science Foundation of the Jiangsu Higher Educa-tion Institutions of China under Grant No. 11KJA520002.
文摘In scenarios of real-time data collection of long-term deployed Wireless Sensor Networks (WSNs), low-latency data collection with long net- work lifetime becomes a key issue. In this paper, we present a data aggregation scheduling with guaran- teed lifetime and efficient latency in WSNs. We first Construct a Guaranteed Lifetime Mininmm Ra- dius Data Aggregation Tree (GLMRDAT) which is conducive to reduce scheduling latency while pro- viding a guaranteed network lifetime, and then de-sign a Greedy Scheduling algorithM (GSM) based on finding the nmzximum independent set in conflict graph to schedule he transmission of nodes in the aggregation tree. Finally, simulations show that our proposed approach not only outperfonm the state-of-the-art solutions in terms of schedule latency, but also provides longer and guaranteed network lifetilre.