Based on 3D modelling of typical tunnels in mines, the airflow distribution in a three-center arch-section tunnel is investigated and the influence of air velocity and cross section on airflow distribution in tunnels ...Based on 3D modelling of typical tunnels in mines, the airflow distribution in a three-center arch-section tunnel is investigated and the influence of air velocity and cross section on airflow distribution in tunnels is studied. The average velocity points were analyzed quantitatively. The results show that the airflow pattern is similar for the three-center arch section under different ventilation velocities and cross sectional areas. The shape of the tunnel cross section and wall are the critical factors influencing the airflow pattern. The average velocity points are mainly close to the tunnel wall. Characteristic equations are developed to describe the average velocity distribution, and provide a theoretical basis for accurately measuring the average velocity in mine tunnels.展开更多
The wall surface roughness renders a significant impact on ventilation of roadways and cross-sectional wind speed distribution.Herein,the wall roughness(Ra)in the roadway has been defined theoretically.Moreover,three-...The wall surface roughness renders a significant impact on ventilation of roadways and cross-sectional wind speed distribution.Herein,the wall roughness(Ra)in the roadway has been defined theoretically.Moreover,three-center arched roadway models for different situations are established based on the normal distribution of roof roughness.The influence of inlet velocity,roof roughness and roadway height on wind speed distribution is systematically studied by using Fluent software.At Ra=0.1 m,the simulation results reveal that the wind speed is negatively related to the distance from the wall to the point where 80%of the central wind speed is reached(DA).Also,the wind speed distribution is significantly influenced by increasing the roof roughness.However,the wind speed distribution becomes asymmetric at Ra=0.2 m and 0.3 m.Furthermore,the low-speed area(v≤1 m/s)started to concentrate on the roof with the increase of roadway height.Overall,an Ra value of<0.1 m can reduce the influence of wall roughness on wind speed distribution of the roadway,which is suggested in practical applications.展开更多
Chopped and spread maize stalks improve soil structure and fertility. However, because of the absence of research on airflow distribution in the chopping chamber, improvement of the spreading uniformity of chopped sta...Chopped and spread maize stalks improve soil structure and fertility. However, because of the absence of research on airflow distribution in the chopping chamber, improvement of the spreading uniformity of chopped stalks has been limited. Therefore, in this study, computational fluid dynamics (CFD) technology was applied to analyze the influence of structural and operational parameters of the chopping and spreading machine on the velocity, pressure, and turbulent kinetic energy distribution of airflow in the chopping chamber. The experimental factors considered were the relative position angle (RPA) between the collecting-chopping shaft and the sliding-supporting shaft, working velocity (WV) of the chopping chamber, and rotational velocity of the collecting-chopping blade (RVCCB). The results revealed that RPA and RVCCB had a significant influence on the maximum negative pressure in the inlet (MNPI), the proportion of negative pressure area at inlet (PNPAI), and the maximum pressure drop at inlet and outlet (MPDIO). Additionally, RVCCB had a strong influence on the maximum velocity, average velocity, and velocity variation coefficient of airflow at the outlet. Moreover, maximum turbulence (MT) and maximum turbulent kinetic energy dissipation rate (MTKEDR) showed a positive relationship with RVCCB. To determine the values of RPA, RVCCB, and WV, a multivariate parameters optimization regression model was constructed, which yielded the optimal values of 15°, 1800 r/min, and 0.50 m/s, respectively. Subsequently, a hyperbolic spiral-type guiding shell with an arc length of 90° was designed to enhance the uniform distribution of airflow in the chopping chamber. Finally, a validation experiment of airflow distribution was conducted. The results showed that the velocity difference between the simulation and the validation experiment was less than 15%, indicating the accuracy of CFD simulation, and the spreading uniformities of the chopped stalks were better than national standards. These findings can serve as technical and theoretical support for the design and optimization of chopping and spreading machines.展开更多
The rational design of airflow distribution is of great importance for comfort and energy conservation.Several numerical investigations of flow and temperature characteristics in cockpits have been performed to study ...The rational design of airflow distribution is of great importance for comfort and energy conservation.Several numerical investigations of flow and temperature characteristics in cockpits have been performed to study the distinct airflow distribution.This study developed the coupled heat transfer model of radiation,convection,and heat conduction for the cockpit flight environment.A three-dimensional physical model was created and a shear stress transfer(SST)k-w turbulence model was well verified with a high prediction accuracy of 91%for the experimental data.The strong inhomogeneous flow and temperature distribution were captured for various initial operating conditions(inlet temperature,inlet pressure,and gravitational acceleration).The results indicated that the common feature of the flow field was stable in the middle part of the cockpit,while the temperature field showed a large temperature gradient near the cockpit’s top region.It was also found that there was remarkable consistency in the distributed features,regardless of the applied initial operating conditions.Additionally,the mass flux and the top heat source greatly affected the flow and temperature characteristics.This study suggests that an optimized operating condition does exist and that this condition makes the flow and temperature field more stable in the cockpit.The corresponding results can provide necessary theoretical guidance for the further design of the cockpit structure.展开更多
基金supported by the Fundamental Research Funds for the Central Universities of China (No.17ZY001)
文摘Based on 3D modelling of typical tunnels in mines, the airflow distribution in a three-center arch-section tunnel is investigated and the influence of air velocity and cross section on airflow distribution in tunnels is studied. The average velocity points were analyzed quantitatively. The results show that the airflow pattern is similar for the three-center arch section under different ventilation velocities and cross sectional areas. The shape of the tunnel cross section and wall are the critical factors influencing the airflow pattern. The average velocity points are mainly close to the tunnel wall. Characteristic equations are developed to describe the average velocity distribution, and provide a theoretical basis for accurately measuring the average velocity in mine tunnels.
基金Project(2017YFC0602901)supported by the National Key Research and Development Program of ChinaProject(2019zzts988)supported by the Postgraduate Independent Exploration and Innovative Project of Central South University,China。
文摘The wall surface roughness renders a significant impact on ventilation of roadways and cross-sectional wind speed distribution.Herein,the wall roughness(Ra)in the roadway has been defined theoretically.Moreover,three-center arched roadway models for different situations are established based on the normal distribution of roof roughness.The influence of inlet velocity,roof roughness and roadway height on wind speed distribution is systematically studied by using Fluent software.At Ra=0.1 m,the simulation results reveal that the wind speed is negatively related to the distance from the wall to the point where 80%of the central wind speed is reached(DA).Also,the wind speed distribution is significantly influenced by increasing the roof roughness.However,the wind speed distribution becomes asymmetric at Ra=0.2 m and 0.3 m.Furthermore,the low-speed area(v≤1 m/s)started to concentrate on the roof with the increase of roadway height.Overall,an Ra value of<0.1 m can reduce the influence of wall roughness on wind speed distribution of the roadway,which is suggested in practical applications.
基金supported by Natural Science Foundation of Henan Province(Grant No.242300421560)Science and Technology Research Project of Henan(Grant No.232102110273)+2 种基金the Scientific Research Foundation for Advanced Talents of Henan University of Technology(Grant No.2022BS077)Training Plan of Young Backbone Teachers in Colleges and Universities in Henan Province(Grant No.2020GGJS088)the Cultivation Programme for Young Backbone Teachers in Henan University of Technology(Grant No.0503/21420191).
文摘Chopped and spread maize stalks improve soil structure and fertility. However, because of the absence of research on airflow distribution in the chopping chamber, improvement of the spreading uniformity of chopped stalks has been limited. Therefore, in this study, computational fluid dynamics (CFD) technology was applied to analyze the influence of structural and operational parameters of the chopping and spreading machine on the velocity, pressure, and turbulent kinetic energy distribution of airflow in the chopping chamber. The experimental factors considered were the relative position angle (RPA) between the collecting-chopping shaft and the sliding-supporting shaft, working velocity (WV) of the chopping chamber, and rotational velocity of the collecting-chopping blade (RVCCB). The results revealed that RPA and RVCCB had a significant influence on the maximum negative pressure in the inlet (MNPI), the proportion of negative pressure area at inlet (PNPAI), and the maximum pressure drop at inlet and outlet (MPDIO). Additionally, RVCCB had a strong influence on the maximum velocity, average velocity, and velocity variation coefficient of airflow at the outlet. Moreover, maximum turbulence (MT) and maximum turbulent kinetic energy dissipation rate (MTKEDR) showed a positive relationship with RVCCB. To determine the values of RPA, RVCCB, and WV, a multivariate parameters optimization regression model was constructed, which yielded the optimal values of 15°, 1800 r/min, and 0.50 m/s, respectively. Subsequently, a hyperbolic spiral-type guiding shell with an arc length of 90° was designed to enhance the uniform distribution of airflow in the chopping chamber. Finally, a validation experiment of airflow distribution was conducted. The results showed that the velocity difference between the simulation and the validation experiment was less than 15%, indicating the accuracy of CFD simulation, and the spreading uniformities of the chopped stalks were better than national standards. These findings can serve as technical and theoretical support for the design and optimization of chopping and spreading machines.
基金the Fundamental Research Funds for the Central Universities.(Project No.31020190504004).
文摘The rational design of airflow distribution is of great importance for comfort and energy conservation.Several numerical investigations of flow and temperature characteristics in cockpits have been performed to study the distinct airflow distribution.This study developed the coupled heat transfer model of radiation,convection,and heat conduction for the cockpit flight environment.A three-dimensional physical model was created and a shear stress transfer(SST)k-w turbulence model was well verified with a high prediction accuracy of 91%for the experimental data.The strong inhomogeneous flow and temperature distribution were captured for various initial operating conditions(inlet temperature,inlet pressure,and gravitational acceleration).The results indicated that the common feature of the flow field was stable in the middle part of the cockpit,while the temperature field showed a large temperature gradient near the cockpit’s top region.It was also found that there was remarkable consistency in the distributed features,regardless of the applied initial operating conditions.Additionally,the mass flux and the top heat source greatly affected the flow and temperature characteristics.This study suggests that an optimized operating condition does exist and that this condition makes the flow and temperature field more stable in the cockpit.The corresponding results can provide necessary theoretical guidance for the further design of the cockpit structure.