D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial unique enzyme that interconverts L-alanine and D-alanine in most bacteria, antimicrobial drug development. Streptococcus mutans is a majo...D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial unique enzyme that interconverts L-alanine and D-alanine in most bacteria, antimicrobial drug development. Streptococcus mutans is a major causative cell wall synthesis. Alanine racemase (Air) is a making this enzyme a potential target for factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Air in S. mutans. We constructed air mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that air deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 pg.mL- 1) was required for the optimal growth of the air mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the air mutant strain. We also determined the compromised competitiveness of the air mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonil~, demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of air to the growth and competitiveness of S. mutans, Air may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.展开更多
基金financially supported through grants from the National Natural Science Foundation of China (81400501 to Ming-Yun Li, 81371135 to Ji-Yao Li and 81430011 to Xue-Dong Zhou)the International Science and Technology Cooperation Programme of China (2014DFE30180 to Xue-Dong Zhou)+1 种基金the Talented Young Investigator Award of Sichuan University (2082604184224 to Xin Xu)the Special Fund of State Key Laboratory of Oral Diseases, Sichuan University (SKLOD201525 to Ming-Yun Li)
文摘D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial unique enzyme that interconverts L-alanine and D-alanine in most bacteria, antimicrobial drug development. Streptococcus mutans is a major causative cell wall synthesis. Alanine racemase (Air) is a making this enzyme a potential target for factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Air in S. mutans. We constructed air mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that air deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 pg.mL- 1) was required for the optimal growth of the air mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the air mutant strain. We also determined the compromised competitiveness of the air mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonil~, demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of air to the growth and competitiveness of S. mutans, Air may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.