In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the ...In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.展开更多
In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better...In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.展开更多
In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obta...In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.展开更多
Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent m...Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).展开更多
We introduce and investigate the properties of a generalization of the derivation of dendriform algebras. We specify all possible parameter values for the generalized derivations, which depend on parameters. We provid...We introduce and investigate the properties of a generalization of the derivation of dendriform algebras. We specify all possible parameter values for the generalized derivations, which depend on parameters. We provide all generalized derivations for complex low-dimensional dendriform algebras.展开更多
A root system is any collection of vectors that has properties that satisfy the roots of a semi simple Lie algebra. If g is semi simple, then the root system A, (Q) can be described as a system of vectors in a Euclide...A root system is any collection of vectors that has properties that satisfy the roots of a semi simple Lie algebra. If g is semi simple, then the root system A, (Q) can be described as a system of vectors in a Euclidean vector space that possesses some remarkable symmetries and completely defines the Lie algebra of g. The purpose of this paper is to show the essentiality of the root system on the Lie algebra. In addition, the paper will mention the connection between the root system and Ways chambers. In addition, we will show Dynkin diagrams, which are an integral part of the root system.展开更多
In this paper, we review some of their related properties of derivations on MValgebras and give some characterizations of additive derivations. Then we prove that the fixed point set of Boolean additive derivations an...In this paper, we review some of their related properties of derivations on MValgebras and give some characterizations of additive derivations. Then we prove that the fixed point set of Boolean additive derivations and that of their adjoint derivations are isomorphic.In particular, we prove that every MV-algebra is isomorphic to the direct product of the fixed point set of Boolean additive derivations and that of their adjoint derivations. Finally we show that every Boolean algebra is isomorphic to the algebra of all Boolean additive(implicative)derivations. These results also give the negative answers to two open problems, which were proposed in [Fuzzy Sets and Systems, 303(2016), 97-113] and [Information Sciences, 178(2008),307-316].展开更多
Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to...Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.展开更多
A 2-dimension linguistic lattice implication algebra(2DL-LIA)can build a bridge between logical algebra and 2-dimension fuzzy linguistic information.In this paper,the notion of a Boolean element is proposed in a 2DL-L...A 2-dimension linguistic lattice implication algebra(2DL-LIA)can build a bridge between logical algebra and 2-dimension fuzzy linguistic information.In this paper,the notion of a Boolean element is proposed in a 2DL-LIA and some properties of Boolean elements are discussed.Then derivations on 2DL-LIAs are introduced and the related properties of derivations are investigated.Moreover,it proves that the derivations on 2DL-LIAs can be constructed by Boolean elements.展开更多
The aim of this paper is to outline the conditions of a conformal hyperquaternion algebra H<sup>⊗2m</sup> in which a higher order plane curve can be described by generalizing the well-known cases of conics...The aim of this paper is to outline the conditions of a conformal hyperquaternion algebra H<sup>⊗2m</sup> in which a higher order plane curve can be described by generalizing the well-known cases of conics and cubic curves in 2D. In other words, the determination of the order of a plane curve through n points and its conformal hyperquaternion algebra H<sup>⊗2m</sup> is the object of this work.展开更多
Let N be a nest of projections on a Hilbert space H and T(N) be the corresponding nest algebra. Let A be a large subalgebra of T(N). It is proved that any maximal n-nilpotent ideal of A is in the form of A∩R F,where...Let N be a nest of projections on a Hilbert space H and T(N) be the corresponding nest algebra. Let A be a large subalgebra of T(N). It is proved that any maximal n-nilpotent ideal of A is in the form of A∩R F,where F is a finite subnest of N and R F is the Jacobson radical of T(F).Using this result can prove that two large subalgebras are isomorphic if and only if the corresponding nests are similar.展开更多
Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivati...Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.展开更多
In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras/: are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if H...In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras/: are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if Hi( ) = 0.展开更多
The linear operations of the equivalent classes of crossed modules of Lie color algebras are studied. The set of the equivalent classes of crossed modules is proved to be a vector space, which is isomorphic with the h...The linear operations of the equivalent classes of crossed modules of Lie color algebras are studied. The set of the equivalent classes of crossed modules is proved to be a vector space, which is isomorphic with the homogeneous components of degree zero of the third cohomology group of Lie color algebras. As an application of this theory, the crossed modules of Witt type Lie color algebras is described, and the result is proved that there is only one equivalent class of the crossed modules of Witt type Lie color algebras when the abelian group Г is equal to Г+. Finally, for a Witt type Lie color algebra, the classification of its crossed modules is obtained by the isomorphism between the third cohomology group and the crossed modules.展开更多
Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there ...Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there exists a completely regular Hausdorff space X such that Π i∈I E i is Riesz algebra isomorphic to C(X) if and only if for every i∈I there exists a completely regular Hausdorff space X i such that E i is Riesz algebra isomorphic to C(X i) .展开更多
In this article, we use the general method of quantization by Drinfeld’s twist to quantize explicitly the Lie bialgebra structures on Lie algebras of Block type.
In this paper, a necessary condition for a maximal triangular algebra to be closed is given. A necessary and sufficient condition for a maximal triangular algebra to be strongly reducible is obtained.
Let K be an algebraically closed field and A be a finite dimensional algebra over K. In this paper we give a classification of biserial incidence algebras with quiver methods.
Lattice implication algebras is an algebraic structure which is established by combining lattice and implication algebras. In this paper,the relationship between lattice implication algebras and MV algebra was discuss...Lattice implication algebras is an algebraic structure which is established by combining lattice and implication algebras. In this paper,the relationship between lattice implication algebras and MV algebra was discussed,and then proved that both of the categorys of the two algebras are categorical equivalence. Finally,the infinitely distributivity in lattice implication algebras were proved.展开更多
A map φ on a Lie algebra g is called to be commuting if [φ(x), x] = 0 for all x ∈ g. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgeb...A map φ on a Lie algebra g is called to be commuting if [φ(x), x] = 0 for all x ∈ g. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgebra of L. In this paper, we prove that a linear mapφon P is commuting if and only if φ is a scalar multiplication map on P.展开更多
文摘In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.
基金partially supported by the Natural Sciences and Engineering Research Council of Canada(2019-03907)。
文摘In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.
基金supported by the National Natural Science Foundation of China (Nos.12171290,12301152)the Natural Science Foundation of Shanxi Province (No.202203021222018)。
文摘In this paper,we first give the general forms of skew commuting maps and skew anti-commuting maps by the Peirce decomposition on a unital ring with a nontrivial idempotent,respectively,and then,as applications,we obtain the concrete characterizations of all nonadditive skew(anti-)commuting maps on some operator algebras.
文摘Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).
文摘We introduce and investigate the properties of a generalization of the derivation of dendriform algebras. We specify all possible parameter values for the generalized derivations, which depend on parameters. We provide all generalized derivations for complex low-dimensional dendriform algebras.
文摘A root system is any collection of vectors that has properties that satisfy the roots of a semi simple Lie algebra. If g is semi simple, then the root system A, (Q) can be described as a system of vectors in a Euclidean vector space that possesses some remarkable symmetries and completely defines the Lie algebra of g. The purpose of this paper is to show the essentiality of the root system on the Lie algebra. In addition, the paper will mention the connection between the root system and Ways chambers. In addition, we will show Dynkin diagrams, which are an integral part of the root system.
基金Supported by a grant of National Natural Science Foundation of China(12001243,61976244,12171294,11961016)the Natural Science Basic Research Plan in Shaanxi Province of China(2020JQ-762,2021JQ-580)。
文摘In this paper, we review some of their related properties of derivations on MValgebras and give some characterizations of additive derivations. Then we prove that the fixed point set of Boolean additive derivations and that of their adjoint derivations are isomorphic.In particular, we prove that every MV-algebra is isomorphic to the direct product of the fixed point set of Boolean additive derivations and that of their adjoint derivations. Finally we show that every Boolean algebra is isomorphic to the algebra of all Boolean additive(implicative)derivations. These results also give the negative answers to two open problems, which were proposed in [Fuzzy Sets and Systems, 303(2016), 97-113] and [Information Sciences, 178(2008),307-316].
基金Supported by the Fundamental Research Funds for the Central Universities
文摘Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.
基金Supported by the National Natural Science Foundation of China(11501523,61673320)。
文摘A 2-dimension linguistic lattice implication algebra(2DL-LIA)can build a bridge between logical algebra and 2-dimension fuzzy linguistic information.In this paper,the notion of a Boolean element is proposed in a 2DL-LIA and some properties of Boolean elements are discussed.Then derivations on 2DL-LIAs are introduced and the related properties of derivations are investigated.Moreover,it proves that the derivations on 2DL-LIAs can be constructed by Boolean elements.
文摘The aim of this paper is to outline the conditions of a conformal hyperquaternion algebra H<sup>⊗2m</sup> in which a higher order plane curve can be described by generalizing the well-known cases of conics and cubic curves in 2D. In other words, the determination of the order of a plane curve through n points and its conformal hyperquaternion algebra H<sup>⊗2m</sup> is the object of this work.
文摘Let N be a nest of projections on a Hilbert space H and T(N) be the corresponding nest algebra. Let A be a large subalgebra of T(N). It is proved that any maximal n-nilpotent ideal of A is in the form of A∩R F,where F is a finite subnest of N and R F is the Jacobson radical of T(F).Using this result can prove that two large subalgebras are isomorphic if and only if the corresponding nests are similar.
基金supported by the National Natural Science Foundation of China(11101084,11071040)the Fujian Province Nature Science Foundation of China(2013J01005)
文摘Let P be a parabolic subalgebra of a general linear Lie algebra gl(n,F) over a field F, where n ≥ 3, F contains at least n different elements, and char(F) ≠ 2. In this article, we prove that generalized derivations, quasiderivations, and product zero derivations of P coincide, and any generalized derivation of P is a sum of an inner derivation, a central quasiderivation, and a scalar multiplication map of P. We also show that any commuting automorphism of P is a central automorphism, and any commuting derivation of P is a central derivation.
基金Supported by the Foundation of Shanghai Education Committee (06FZ029)NSF of China (10471091)"One Hundred Program" from University of Science and Technology of China
文摘In this article, Lie super-bialgebra structures on generalized super-Virasoro algebras/: are considered. It is proved that all such Lie super-bialgebras are coboundary triangular Lie super-bialgebras if and only if Hi( ) = 0.
基金The Natural Science Foundation of Jiangsu Province(No.BK2012736)the Natural Science Foundation of Chuzhou University(No.2010kj006Z)
文摘The linear operations of the equivalent classes of crossed modules of Lie color algebras are studied. The set of the equivalent classes of crossed modules is proved to be a vector space, which is isomorphic with the homogeneous components of degree zero of the third cohomology group of Lie color algebras. As an application of this theory, the crossed modules of Witt type Lie color algebras is described, and the result is proved that there is only one equivalent class of the crossed modules of Witt type Lie color algebras when the abelian group Г is equal to Г+. Finally, for a Witt type Lie color algebra, the classification of its crossed modules is obtained by the isomorphism between the third cohomology group and the crossed modules.
文摘Let { E i∶i∈I } be a family of Archimedean Riesz algebras.The product of Riesz algebras is denoted by Π i∈I E i .The main result in this paper is the following conclusion:there exists a completely regular Hausdorff space X such that Π i∈I E i is Riesz algebra isomorphic to C(X) if and only if for every i∈I there exists a completely regular Hausdorff space X i such that E i is Riesz algebra isomorphic to C(X i) .
基金supported by the National Science Foundation of China (10825101)"One Hundred Talents Program" from University of Science and Technology of Chinathe China Postdoctoral Science Foundation (20090450810)
文摘In this article, we use the general method of quantization by Drinfeld’s twist to quantize explicitly the Lie bialgebra structures on Lie algebras of Block type.
文摘In this paper, a necessary condition for a maximal triangular algebra to be closed is given. A necessary and sufficient condition for a maximal triangular algebra to be strongly reducible is obtained.
基金Foundation item: Supported by the National Natural Science Foundation of China(11271119) Supported by the Natural Science Foundation of Beijing(1122002)
文摘Let K be an algebraically closed field and A be a finite dimensional algebra over K. In this paper we give a classification of biserial incidence algebras with quiver methods.
文摘Lattice implication algebras is an algebraic structure which is established by combining lattice and implication algebras. In this paper,the relationship between lattice implication algebras and MV algebra was discussed,and then proved that both of the categorys of the two algebras are categorical equivalence. Finally,the infinitely distributivity in lattice implication algebras were proved.
基金Supported by the National Natural Science Foundation of China(Ill01084) Supported by the Fujian Province Natural Science Foundation of China
文摘A map φ on a Lie algebra g is called to be commuting if [φ(x), x] = 0 for all x ∈ g. Let L be a finite-dimensional simple Lie algebra over an algebraically closed field F of characteristic 0, P a parabolic subalgebra of L. In this paper, we prove that a linear mapφon P is commuting if and only if φ is a scalar multiplication map on P.