The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve ...The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve reliability must be performed before a subsea all-electric XT is launched;such measures are crucial to subsea safe production.A fault-tolerant control system was developed in this paper to improve the reliability of XT.A dual-factor degradation model for electrical control system components was proposed to improve the evaluation accuracy,and the reliability of the control system was analyzed based on the Markov model.The influences of the common cause failure and the failure rate in key components on the reliability and availability of the control system were studied.The impacts of mean time to repair and incomplete repair strategy on the availability of the control system were also investigated.Research results show the key factors that affect system reliability,and a specific method to improve the reliability and availability of the control system was given.This reliability analysis method for the control system could be applied to general all-electric subsea control systems to guide their safe production.展开更多
As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic p...As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic principles of nose wheel steering system and the design technique of mechanotronics,an all-electric aircraft nose wheel steering system,composed of a nose wheel steering mechanism of two worm gear and a control servo system of fly-by-wire with both steering and anti-shimmy functions is designed to meet the demand for operation control in the nose wheel steering system.Then,based on the LMS-AMESim software,the simulation model of the system is established to simulate the dynamics for the verification of its steering function.The simulation results indicate that the nose wheel steering system is reasonable,and can meet the requirements of the general project.Furthermore,the prototypes of the steering mechanism and control system are studied to validate the design,and the steering test bench is prepared to test the designed system.The test results,such as steer angle,rotate speed of motor are analyzed in details and compared with the theoretical results.The analysis and comparison results show that the design is reasonable and the property of the prototype can achieve the design objectives.展开更多
Both the traverse subsystem and the elevation subsystem of the all-electrical tank gun control system are composed of electrical drive control system respectively. The parameters of PI regulator in these electrical dr...Both the traverse subsystem and the elevation subsystem of the all-electrical tank gun control system are composed of electrical drive control system respectively. The parameters of PI regulator in these electrical drive control systems affect the performance of the control system seriously. Up to now, there is not a simple and practical method for choosing regulator parameters, which are usually determined by repeated and continual readjustment. This method is low efficient, and the parameters got are not always optimal. A method for on-line adjusting the parameters of PI regulator in the electrical drive control system by computer program is introduced in this paper. The function of adjusting PI parameters of the electrical drive control system is realized by PC program written by VC++ and controlling program written by assemble language and by the communication between PC and DSP completed by the control MSCOMM in VC++6.0. The method as mentioned above which is applied for an all-electrical tank gun control system under development is proved very available, a better performance might be obtained for the all-electrical tank gun control system easily.展开更多
The development of subsea all-electric Christmas trees is an area of focus in the offshore oil industry worldwide.The main difficulties are associated with the development and control strategies for subsea all-electri...The development of subsea all-electric Christmas trees is an area of focus in the offshore oil industry worldwide.The main difficulties are associated with the development and control strategies for subsea all-electric actuators,which are the most criti-cal components of subsea Christmas trees.A single-motor-level fuzzy PID control with an integrated working condition detection mod-ule and a three-motor redundant-level deviation strategy with coupled joint synchronous control were proposed in this paper to real-ize the real time determination of algorithm parameters according to the working conditions,solve the rapid redistribution problems,and maintain the fast speed of the servo motor of the subsea all-electric tree valve actuator.A synchronous control electrical system was built,tested,and verified through simulation analysis.Test results show that the two redundant servo motors can still control the all-electric valve actuator and provide good synchronization control capabilities despite the failure of one servo motor,and the verti-cal and horizontal vibration values of the system are within reasonable ranges.The synchronous control strategy can be applied to the synchronous control problem of subsea all-electric production systems,which is of considerable importance for the development of subsea all-electric production systems.展开更多
The main purpose of this article is to provide an instructive review of the technological challenges hindering the road toward more electric powertrains in aircraft.Hybrid,all-electric,and turboelectric powertrain arc...The main purpose of this article is to provide an instructive review of the technological challenges hindering the road toward more electric powertrains in aircraft.Hybrid,all-electric,and turboelectric powertrain architectures are discussed as possible fuel consumption and weight reduction solutions.Among these architectures,the short-term implementation of hybrid and all-electric architectures is limited,particularly for large-capacity aircraft due to the low energy/power density levels achievable by state-of-the-art electrical energy storage systems.Conversely,turboelectric architectures with advanced distributed propulsion and boundary layer ingestion are set to lead the efforts toward more electric powertrains.At the center of this transition,power converters and high-power density electric machines,i.e.,electric motors and generators,and their corresponding thermal management systems are analyzed as the key devices enabling the more electric powertrain.Moreover,to further increase the fuel efficiency and power density of the aircraft,the benefits and challenges of implementing higher voltage powertrains are described.Lastly,based on the findings collected in this article,the projected roadmap toward more electric aircraft powertrains is presented.Herein,the individual targets for each technology,i.e.,batteries,electric machines,and power converters,and how they translate to future aircraft prototypes are illustrated.展开更多
Vehicle electrification is a trend that is transforming the transportation landscape.Automobiles,trains,ships and aircrafts are all being electrified as they are being designed to be more efficient,cleaner and more fl...Vehicle electrification is a trend that is transforming the transportation landscape.Automobiles,trains,ships and aircrafts are all being electrified as they are being designed to be more efficient,cleaner and more flexible.Vehicle electrification has brought many multi-faceted challenges and opportunities for control design and system integration.In this paper,we will discuss some of the control problems introduced by vehicle electrification.Case studies will be presented to illustrate the control implications.In particular,optimisation-based energy management solutions will be elucidated as representative examples of new design framework for control design and system integration for hybrid electric vehicles and all electric ships.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61703224。
文摘The subsea all-electric Christmas tree(XT) is a key equipment in subsea production systems.Once it fails,the marine environment will be seriously polluted.Therefore,strict reliability analysis and measures to improve reliability must be performed before a subsea all-electric XT is launched;such measures are crucial to subsea safe production.A fault-tolerant control system was developed in this paper to improve the reliability of XT.A dual-factor degradation model for electrical control system components was proposed to improve the evaluation accuracy,and the reliability of the control system was analyzed based on the Markov model.The influences of the common cause failure and the failure rate in key components on the reliability and availability of the control system were studied.The impacts of mean time to repair and incomplete repair strategy on the availability of the control system were also investigated.Research results show the key factors that affect system reliability,and a specific method to improve the reliability and availability of the control system was given.This reliability analysis method for the control system could be applied to general all-electric subsea control systems to guide their safe production.
基金supported partly by the Aeronautical Science Foundation of China(No.20142852025)
文摘As all-electric aircraft has many advantages,an aircraft nose wheel steering system would be developed to the all-electric direction.Concerning the control demand of the nose wheel steering system,based on the basic principles of nose wheel steering system and the design technique of mechanotronics,an all-electric aircraft nose wheel steering system,composed of a nose wheel steering mechanism of two worm gear and a control servo system of fly-by-wire with both steering and anti-shimmy functions is designed to meet the demand for operation control in the nose wheel steering system.Then,based on the LMS-AMESim software,the simulation model of the system is established to simulate the dynamics for the verification of its steering function.The simulation results indicate that the nose wheel steering system is reasonable,and can meet the requirements of the general project.Furthermore,the prototypes of the steering mechanism and control system are studied to validate the design,and the steering test bench is prepared to test the designed system.The test results,such as steer angle,rotate speed of motor are analyzed in details and compared with the theoretical results.The analysis and comparison results show that the design is reasonable and the property of the prototype can achieve the design objectives.
文摘Both the traverse subsystem and the elevation subsystem of the all-electrical tank gun control system are composed of electrical drive control system respectively. The parameters of PI regulator in these electrical drive control systems affect the performance of the control system seriously. Up to now, there is not a simple and practical method for choosing regulator parameters, which are usually determined by repeated and continual readjustment. This method is low efficient, and the parameters got are not always optimal. A method for on-line adjusting the parameters of PI regulator in the electrical drive control system by computer program is introduced in this paper. The function of adjusting PI parameters of the electrical drive control system is realized by PC program written by VC++ and controlling program written by assemble language and by the communication between PC and DSP completed by the control MSCOMM in VC++6.0. The method as mentioned above which is applied for an all-electrical tank gun control system under development is proved very available, a better performance might be obtained for the all-electrical tank gun control system easily.
基金support of the Shandong Provincial Natural Science Foundation(No.ZR2021QE059)the National Natural Science Foundation of China(No.51974169)the Key R&D Program of Shandong Province(No.2019GGX101020).
文摘The development of subsea all-electric Christmas trees is an area of focus in the offshore oil industry worldwide.The main difficulties are associated with the development and control strategies for subsea all-electric actuators,which are the most criti-cal components of subsea Christmas trees.A single-motor-level fuzzy PID control with an integrated working condition detection mod-ule and a three-motor redundant-level deviation strategy with coupled joint synchronous control were proposed in this paper to real-ize the real time determination of algorithm parameters according to the working conditions,solve the rapid redistribution problems,and maintain the fast speed of the servo motor of the subsea all-electric tree valve actuator.A synchronous control electrical system was built,tested,and verified through simulation analysis.Test results show that the two redundant servo motors can still control the all-electric valve actuator and provide good synchronization control capabilities despite the failure of one servo motor,and the verti-cal and horizontal vibration values of the system are within reasonable ranges.The synchronous control strategy can be applied to the synchronous control problem of subsea all-electric production systems,which is of considerable importance for the development of subsea all-electric production systems.
文摘The main purpose of this article is to provide an instructive review of the technological challenges hindering the road toward more electric powertrains in aircraft.Hybrid,all-electric,and turboelectric powertrain architectures are discussed as possible fuel consumption and weight reduction solutions.Among these architectures,the short-term implementation of hybrid and all-electric architectures is limited,particularly for large-capacity aircraft due to the low energy/power density levels achievable by state-of-the-art electrical energy storage systems.Conversely,turboelectric architectures with advanced distributed propulsion and boundary layer ingestion are set to lead the efforts toward more electric powertrains.At the center of this transition,power converters and high-power density electric machines,i.e.,electric motors and generators,and their corresponding thermal management systems are analyzed as the key devices enabling the more electric powertrain.Moreover,to further increase the fuel efficiency and power density of the aircraft,the benefits and challenges of implementing higher voltage powertrains are described.Lastly,based on the findings collected in this article,the projected roadmap toward more electric aircraft powertrains is presented.Herein,the individual targets for each technology,i.e.,batteries,electric machines,and power converters,and how they translate to future aircraft prototypes are illustrated.
文摘Vehicle electrification is a trend that is transforming the transportation landscape.Automobiles,trains,ships and aircrafts are all being electrified as they are being designed to be more efficient,cleaner and more flexible.Vehicle electrification has brought many multi-faceted challenges and opportunities for control design and system integration.In this paper,we will discuss some of the control problems introduced by vehicle electrification.Case studies will be presented to illustrate the control implications.In particular,optimisation-based energy management solutions will be elucidated as representative examples of new design framework for control design and system integration for hybrid electric vehicles and all electric ships.