The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar c...The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.展开更多
A 135 mW single-frequency distributed Bragg reflector fiber laser at 1.95μm was obtained based on a Tm:YAG ceramic-derived all-glass fiber.The fiber laser achieved an optical signal-to-noise ratio of~77 d B.Moreover,...A 135 mW single-frequency distributed Bragg reflector fiber laser at 1.95μm was obtained based on a Tm:YAG ceramic-derived all-glass fiber.The fiber laser achieved an optical signal-to-noise ratio of~77 d B.Moreover,the threshold and linewidth of the single-frequency laser were measured to be 15.4 mW and 4.5 kHz,respectively.In addition,the measured relative intensity noise was less than-140 d B·Hz^(-1)at frequencies of over 10 MHz.The results show that the as-drawn Tm:YAG ceramic-derived all-glass fiber is highly promising for~2μm single-frequency fiber laser applications.展开更多
China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly f...China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well.展开更多
基金The National Natural Science Foundation of China(No.51376110,51541604)the Major International(Regional) Joint Research Project of the National Natural Science Foundation of China(No.61320106011)
文摘The experimental study of natural convection in allglass evacuated tube solar collectors is performed through the experimental platform of the solar-assisted fuel cell system.The experimental facility includes solar collectors with different length and diameter tubes, different coating materials, and with / without guide plates, respectively. Threedimensional mathematical models on natural and forced convections in the solar collectors are established and the experimental data is validated by field synergy and entransy principles. The results of natural convection show that the water temperature increases and thermal efficiency decreases gradually with the evacuated tube length. The thermal efficiency increases when absorption rates increase from 0. 95 to 1. 0 and emission rates decrease from 0. 16 to 0. 06. The thermal efficiency of solar collectors is increased after being equipped with the guide plate, which is attributed to the disappearance of the mixed flowand the enhancement of the heat transfer at the bottom of the evacuated tube. The results of forced convertion indicate that the Reynolds, Nusselt and entransy increments of the horizontal double collectors are higher than those of the vertical single collector while the entransy dissipation is lower than that of the vertical single collector. It is concluded that the solar collectors with guide plates are suitable for natural convection while the double horizontal collectors are suitable for forced convection in the thermal field of solar-assisted fuel cell systems with lowand medium temperatures.
基金Project supported by the Yunnan Fundamental Research Projects(Grant No.202201AU070065)Natural Science Foundation of China for Young Scholars(Grant No.52002131)+1 种基金Open Fund of the Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques(Grant No.2021-04)the Scientific Research Fund Project of Yunnan Provincial Department of Education(Grant No.2022J0591)
文摘A 135 mW single-frequency distributed Bragg reflector fiber laser at 1.95μm was obtained based on a Tm:YAG ceramic-derived all-glass fiber.The fiber laser achieved an optical signal-to-noise ratio of~77 d B.Moreover,the threshold and linewidth of the single-frequency laser were measured to be 15.4 mW and 4.5 kHz,respectively.In addition,the measured relative intensity noise was less than-140 d B·Hz^(-1)at frequencies of over 10 MHz.The results show that the as-drawn Tm:YAG ceramic-derived all-glass fiber is highly promising for~2μm single-frequency fiber laser applications.
文摘China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well.