Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structura...Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structural unsafety. It is necessary to predict wind-induced vibration response and find out a method to mitigate such an excessive wind-induced vibration at the preliminary design stage. Recently, many studies have been conducted in using actuator control force based on the linear quadratic optimum control algorithm. It was accepted as a common knowledge that the performance of passive tuned mass damper(TMD) could increase by incorporating a feedback active control force in the design of TMD, which is called active tuned mass damper(ATMD). However, the fact that ATMD is superior to TMD to reduce wind-induced vibration of a tall building is still a question. The effectiveness of TMD for mitigating the along-wind vibration of a tall building was investigated. Optimum parameters of tuning frequency and damping ratio for TMD under a random load which has a white noise spectra were used. Fluctuating along-wind load acting on a tall building treated as a stationary Gaussian random process was simulated numerically using the along-wind load spectra. And using this simulated along-wind load, along-wind responses of a tall building with and without TMD were calculated and the effectiveness of TMD in mitigating the along-wind response of a tall building was found out.展开更多
In this paper, an analytical framework to evaluate the along-wind-induced dynamic responses of a transmission tower is presented. Two analytical models and a new method are developed: (1) a higher mode generalized ...In this paper, an analytical framework to evaluate the along-wind-induced dynamic responses of a transmission tower is presented. Two analytical models and a new method are developed: (1) a higher mode generalized force spectrum (GFS) model of the transmission tower is deduced; (2) an analytical model that includes the contributions of the higher modes is further derived as a rational algebraic formula to estimate the structural displacement response; and (3) a new approach, applying load with displacement (ALD) instead of force, to solve the internal force of transmission tower is given. Unlike conventional methods, the ALD method can avoid calculating equivalent static wind loads (ESWLs). Finally, a transmission tower structure is used as a numerical example to verify the feasibility and accuracy of the ALD method.展开更多
Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predi...Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predict and mitigate such wind-induced vibration at the preliminary design stage. Fluctuating across and along-wind loads acting on a tall building that could not be formulated theoretically were simulated numerically in the time domain using known across and along-wind load spectra. These simulated wind loads were used to estimate the across and along-wind responses of a tall building, which are less narrow-banded processes, based on the state space variable approach. The simulated across-wind response of root-mean-square value(0.0047) and that of KAREEM's(0.0040) and the simulated along-wind response of root-mean-square value(0.021) and that of SOLARI's(0.027) were compared. It is found that these are good approximations of closed form responses. Therefore, these numerically simulated across and along-wind loads can be used for across and along-wind responses estimation for the wind-resistant design of a tall building at the preliminary design stage.展开更多
The present paper deals with the numerical analysis of tall reinforced concrete chimneys with piled raft foundation subjected to along-wind loads considering the flexibility of soil. The analysis was carded out using ...The present paper deals with the numerical analysis of tall reinforced concrete chimneys with piled raft foundation subjected to along-wind loads considering the flexibility of soil. The analysis was carded out using finite element method on the basis of direct method of soil-structure interaction (SSI). The linear elastic material behavior was assumed for chimney, piled raft and soil. Four different material properties of soil stratum were selected in order to study the effect of SSI. The chimney elevation and the thickness of raft of piled raft foundation were also varied for the parametric study. The chimneys were assumed to be located in terrain category 2 and subjected to a maximum wind speed of 50 m/s as per IS:875 (Part 3)-1987. The along-wind loads were computed according to IS:4998 (Part 1)-1992. The base moments of chimney evaluated from the S SI analysis were compared with those obtained as per IS:4998 (Part 1)-1992. The tangential and radial bending moments of raft of piled raft foundation were evaluated through SSI analysis and compared with those obtained from conventional analysis as per IS:I 1089-1984, assuming rigidity at the base of the raft foundation. The settlements of raft of piled raft foundation, deflection of pile and moments of the pile due to interaction with different soil stratum were also evaluated. From the analysis, considerable reduction in the base moment of chimney due to the effect of SSI is observed. Higher radial moments and lower tangential moments were obtained for lower elevation chimneys with piled raft resting on loose sand when compared with conventional analysis results. The effect of SSI in the response of the pile is more significant when the structure-foundation system interacts with loose sand.展开更多
基金Project(2011-0028567)supported by the National Research Foundation of Korea
文摘Most of modern tall buildings using lighter construction materials with high strength and less stiffness are more flexible, which occurs excessive wind-induced vibration, resulting in occupant discomfort and structural unsafety. It is necessary to predict wind-induced vibration response and find out a method to mitigate such an excessive wind-induced vibration at the preliminary design stage. Recently, many studies have been conducted in using actuator control force based on the linear quadratic optimum control algorithm. It was accepted as a common knowledge that the performance of passive tuned mass damper(TMD) could increase by incorporating a feedback active control force in the design of TMD, which is called active tuned mass damper(ATMD). However, the fact that ATMD is superior to TMD to reduce wind-induced vibration of a tall building is still a question. The effectiveness of TMD for mitigating the along-wind vibration of a tall building was investigated. Optimum parameters of tuning frequency and damping ratio for TMD under a random load which has a white noise spectra were used. Fluctuating along-wind load acting on a tall building treated as a stationary Gaussian random process was simulated numerically using the along-wind load spectra. And using this simulated along-wind load, along-wind responses of a tall building with and without TMD were calculated and the effectiveness of TMD in mitigating the along-wind response of a tall building was found out.
基金National Natural Science Foundation of China Under Grant No.50638010Foundation of Ministry of Education for Innovation Group Under Grant No. IRT0518
文摘In this paper, an analytical framework to evaluate the along-wind-induced dynamic responses of a transmission tower is presented. Two analytical models and a new method are developed: (1) a higher mode generalized force spectrum (GFS) model of the transmission tower is deduced; (2) an analytical model that includes the contributions of the higher modes is further derived as a rational algebraic formula to estimate the structural displacement response; and (3) a new approach, applying load with displacement (ALD) instead of force, to solve the internal force of transmission tower is given. Unlike conventional methods, the ALD method can avoid calculating equivalent static wind loads (ESWLs). Finally, a transmission tower structure is used as a numerical example to verify the feasibility and accuracy of the ALD method.
基金Project(2011-0028567)supported by the National Research Foundation of Korea
文摘Most modern tall buildings using lighter construction materials are more flexible, which can lead to excessive wind-induced vibrations resulting in occupant discomfort and structural unsafety. It is necessary to predict and mitigate such wind-induced vibration at the preliminary design stage. Fluctuating across and along-wind loads acting on a tall building that could not be formulated theoretically were simulated numerically in the time domain using known across and along-wind load spectra. These simulated wind loads were used to estimate the across and along-wind responses of a tall building, which are less narrow-banded processes, based on the state space variable approach. The simulated across-wind response of root-mean-square value(0.0047) and that of KAREEM's(0.0040) and the simulated along-wind response of root-mean-square value(0.021) and that of SOLARI's(0.027) were compared. It is found that these are good approximations of closed form responses. Therefore, these numerically simulated across and along-wind loads can be used for across and along-wind responses estimation for the wind-resistant design of a tall building at the preliminary design stage.
文摘The present paper deals with the numerical analysis of tall reinforced concrete chimneys with piled raft foundation subjected to along-wind loads considering the flexibility of soil. The analysis was carded out using finite element method on the basis of direct method of soil-structure interaction (SSI). The linear elastic material behavior was assumed for chimney, piled raft and soil. Four different material properties of soil stratum were selected in order to study the effect of SSI. The chimney elevation and the thickness of raft of piled raft foundation were also varied for the parametric study. The chimneys were assumed to be located in terrain category 2 and subjected to a maximum wind speed of 50 m/s as per IS:875 (Part 3)-1987. The along-wind loads were computed according to IS:4998 (Part 1)-1992. The base moments of chimney evaluated from the S SI analysis were compared with those obtained as per IS:4998 (Part 1)-1992. The tangential and radial bending moments of raft of piled raft foundation were evaluated through SSI analysis and compared with those obtained from conventional analysis as per IS:I 1089-1984, assuming rigidity at the base of the raft foundation. The settlements of raft of piled raft foundation, deflection of pile and moments of the pile due to interaction with different soil stratum were also evaluated. From the analysis, considerable reduction in the base moment of chimney due to the effect of SSI is observed. Higher radial moments and lower tangential moments were obtained for lower elevation chimneys with piled raft resting on loose sand when compared with conventional analysis results. The effect of SSI in the response of the pile is more significant when the structure-foundation system interacts with loose sand.