The present study found expressions of a7 nicotinic acetylcholine receptor on hippocampal slices and hippocampal astrocytes using double immunofluorescence stainings. Expression of glial fibdllary acidic protein in th...The present study found expressions of a7 nicotinic acetylcholine receptor on hippocampal slices and hippocampal astrocytes using double immunofluorescence stainings. Expression of glial fibdllary acidic protein in the cultured hippocampal slices and hippocampal astrocytes significantly increased, and levels of macrophage inflammatory protein la, RANTES, interleukin-1β, intedeukin-6, and tumor necrosis factor-α increased in the supernatant of cultured astrocytes following exposure to 200 nM amyloid 13 protein 1-42. Preconditioning of 10 μM nicotine, a nicotinic acetylcholine receptor agonist, could attenuate the influence of amyloid β protein 1-42 in inflammatory mediator secretion of cultured astrocytes. Experimental findings indicated that α7 nicotinic acetylcholine receptor was expressed on the surface of hippocampal astrocytes, and activated a7 nicotinic acetylcholine receptor was shown to inhibit inflammation induced by amyloid β protein 1-42.展开更多
Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. Th...Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. The present study was to determine the effects of activation of α7nAChR on oxidant stress-induced injury in endo- thelial cells. Methods Cultured human umbilical vein endothelial cells were treated with H202 (400 μmol · L^-1) or H202plus PNU-282987 ( 10 μmol · L^-1 ). Cell viability and membrane integrity were measured. AnnexinV + PI assay, immunoblotting of bcl-2, bax and cleaved caspase-3, and immunofluorescence of apoptosis inducing factor (AIF) were performed to evaluate apoptosis. Protein expression of vascular peroxidase-1 ( VPO-1 ) and phosphor- JNK were measured by immunoblotting. Results Activation of α7nAChR by a selective agonist PNU-282987 pre-vented H202-indced decrease of cell viability and increase of lactate dehydrogenase release. Activation of α7nAChR markedly reduced cell apoptosis and intracellular oxidative stress level. Moreover, activation of α7nAChR reduced H2 02 -induced VPO-1 protein upregulation and JNK1/2 phosphorylation. The inhibitory effect of α7nAChR activa- tion on VPO-1 was blocked by JNK inhibitor SP600125. In addition, pretreatment of α7nAChR antagonist methyl- lycaconitine blocked the cytoprotective effect of PNU-282987. Conclusion These results provide the first evidence that activation of α7nAChR protects against oxidant stress-induced damage by suppressing VPO-1 in a JNK signa- ling pathway-dependent manner in endothelial cells.展开更多
OBJECTIVE Individuals vary in sensitivity to the behavioral effects of nicotine,resulting in differences in their vulnerability to addiction.The role of rearing environment in determining individual sensitivity to nic...OBJECTIVE Individuals vary in sensitivity to the behavioral effects of nicotine,resulting in differences in their vulnerability to addiction.The role of rearing environment in determining individual sensitivity to nicotine is unclear.The neuropharmacological mechanisms mediating the effect of rearing environment on the actions of nicotine are also understood.Thus,the contribution of rearing environment in determining the sensitivity to the locomotor effects of nicotine and regulating α4β2*-and α7-nicotinic acetylcholine(n ACh) receptor expressionwas determined in rats reared in isolated(IC) or enriched(EC) conditions.METHODS To measure locomotor activity,adolescent rats(postnatal day 21-51)were injected with saline(1 mL·kg^(-1)) or nicotine(0.3 mg·kg^(-1)) subcutaneously,then placed in chamberswhere ambulatory activity was monitored for 30-min by computer for 14 daily sessions.α4β2*-andα7-n ACh receptor expression in the mesolimbic dopamine pathway was determined by quantitative autoradiography of [125 I]-epibatidine and [125 I]-bungarotoxinbinding,respectively,in 16 μmol·L^(-1) coronal sections.Values for receptor expression in fmol are ±s of 8 brains and compared by two-tailed,unpaired t-test with P<0.05 considered significant.RESULTS EC-rats are similarly sensitive as IC-rats to the locomotor effects of nicotine.[125 I]-epibatidine binding in the ventral tegmental area of EC-rats was reduced(2.8±0.3 fmo L) compared to IC-rats(4.0±0.4 fmo L);there was no difference in the nucleus accumbens.There was no difference between EC-and IC-rats in α7-n ACh receptor expression in the mesolimbic dopamine pathway.CONCLUSION Rearing environment differentially regulates n ACh receptor subtypes in EC and IC rats.These data suggest regulation of n ACh receptors by environmental factors may be a mechanism for the protective effect of enrichment against altered sensitivity to nicotine in genetically vulnerable individuals.The characterization of these mechanisms will aid in development of novel pharmacological tools mimicking the protection afforded by environmental enrichment in nicotine-sensitive individuals.展开更多
The article aims to underline the impact of nicotine and pesticides on neuronal <i>α</i>7-nicotinic acetylcholine receptors expression in brainstem regions receiving cholinergic projections, given their f...The article aims to underline the impact of nicotine and pesticides on neuronal <i>α</i>7-nicotinic acetylcholine receptors expression in brainstem regions receiving cholinergic projections, given their fundamental role during the neuronal development. The in-depth histopathological/immunohistochemical examination of the autonomic nervous system performed at the “Lino Rossi” Research Center of the Milan University on a wide group of sudden unexpected fetal and infant deaths, highlighted the frequent hypodevelopment of brainstem structures checking the vital functions associated to altered expression of <i>α</i>7-nicotinic acetylcholine receptors and smoke absorption in pregnancy. A dysregulation of the catecholamine system was also observed in the cerebellar cortex of the same cases. However, in a not negligible percentage of sudden deaths with altered expression of <i>α</i>7-nicotinic receptors, the mothers never smoked but lived in rural areas. Specific analytical procedures showed the presence of agricultural pesticides in cerebral cortex samples of these victims. Therefore, it is possible to believe that the exposition to pesticides during pregnancy can produce the same harmful effects as nicotine on the nicotinic acetylcholine receptors. Moreover, alterations of <i>α</i>7-nicotinic acetylcholine receptors receptor expression were also detected in the lungs of many sudden perinatal death victims, allowing to consider even these findings as possible consequence of maternal exposure to toxic factors.展开更多
Discoveries in the first few years of the 21st century have led to an understanding of important interactions between the nervous system and the inflammatory response at the molecular level, most notably the acetylcho...Discoveries in the first few years of the 21st century have led to an understanding of important interactions between the nervous system and the inflammatory response at the molecular level, most notably the acetylcholine (ACh)- triggered,α7-nicotinic acetylcholine receptor (α7nAChR)- dependent nicotinic antinflammatory pathway. Studies using the α7nAChR agonist, nicotine, for the treatment of mucosal inflammation have been undertaken but the efficacy of nicotine as a treatment for inflammatory bowel diseases remains debatable. Further understanding of the nicotinic anti-inflammatory pathway and other endogenous anti-inflammatory mechanisms is required in order to develop refined and specific therapeutic strategies for the treatment of a number of inflammatory diseases and conditions, including periodontitis, psoriasis, sarcoidosis, and ulcerative colitis.展开更多
Inflammation is important in the pathogenesis and development of cardiovascular diseases.Recent studies show that vagus nerve stimulation inhibits pro-inflammatory cytokine production through“the cholinergic anti-inf...Inflammation is important in the pathogenesis and development of cardiovascular diseases.Recent studies show that vagus nerve stimulation inhibits pro-inflammatory cytokine production through“the cholinergic anti-inflammatory pathway,”more specifically via theα7 nicotinic acetylcholine receptor(α7nAChR).In the current study,the role of the cholinergic anti-inflammatory pathway during septic shock,hypertension,and myocardial infarction is reviewed,and its possible clinical implications in cardiovascular diseases are discussed.展开更多
基金supported by the National Natural Science Foundation of China,No.30471928 and No.30973162the Natural Science Foundation of Guangdong Province,No.07005203
文摘The present study found expressions of a7 nicotinic acetylcholine receptor on hippocampal slices and hippocampal astrocytes using double immunofluorescence stainings. Expression of glial fibdllary acidic protein in the cultured hippocampal slices and hippocampal astrocytes significantly increased, and levels of macrophage inflammatory protein la, RANTES, interleukin-1β, intedeukin-6, and tumor necrosis factor-α increased in the supernatant of cultured astrocytes following exposure to 200 nM amyloid 13 protein 1-42. Preconditioning of 10 μM nicotine, a nicotinic acetylcholine receptor agonist, could attenuate the influence of amyloid β protein 1-42 in inflammatory mediator secretion of cultured astrocytes. Experimental findings indicated that α7 nicotinic acetylcholine receptor was expressed on the surface of hippocampal astrocytes, and activated a7 nicotinic acetylcholine receptor was shown to inhibit inflammation induced by amyloid β protein 1-42.
文摘Aim Alpha7 nicotinic acetylcholine receptor (α7nAChR), a subtype of nAChR regulating neurotrans- mission in central nervous system, is an essential regulator of cholinergic antiinflammatory pathway in periphery. The present study was to determine the effects of activation of α7nAChR on oxidant stress-induced injury in endo- thelial cells. Methods Cultured human umbilical vein endothelial cells were treated with H202 (400 μmol · L^-1) or H202plus PNU-282987 ( 10 μmol · L^-1 ). Cell viability and membrane integrity were measured. AnnexinV + PI assay, immunoblotting of bcl-2, bax and cleaved caspase-3, and immunofluorescence of apoptosis inducing factor (AIF) were performed to evaluate apoptosis. Protein expression of vascular peroxidase-1 ( VPO-1 ) and phosphor- JNK were measured by immunoblotting. Results Activation of α7nAChR by a selective agonist PNU-282987 pre-vented H202-indced decrease of cell viability and increase of lactate dehydrogenase release. Activation of α7nAChR markedly reduced cell apoptosis and intracellular oxidative stress level. Moreover, activation of α7nAChR reduced H2 02 -induced VPO-1 protein upregulation and JNK1/2 phosphorylation. The inhibitory effect of α7nAChR activa- tion on VPO-1 was blocked by JNK inhibitor SP600125. In addition, pretreatment of α7nAChR antagonist methyl- lycaconitine blocked the cytoprotective effect of PNU-282987. Conclusion These results provide the first evidence that activation of α7nAChR protects against oxidant stress-induced damage by suppressing VPO-1 in a JNK signa- ling pathway-dependent manner in endothelial cells.
基金supported by Nebraska Cancer and Smoking Disease Research Programs LB506and LB595 to CS BOCKMAN and DJ STAIRS
文摘OBJECTIVE Individuals vary in sensitivity to the behavioral effects of nicotine,resulting in differences in their vulnerability to addiction.The role of rearing environment in determining individual sensitivity to nicotine is unclear.The neuropharmacological mechanisms mediating the effect of rearing environment on the actions of nicotine are also understood.Thus,the contribution of rearing environment in determining the sensitivity to the locomotor effects of nicotine and regulating α4β2*-and α7-nicotinic acetylcholine(n ACh) receptor expressionwas determined in rats reared in isolated(IC) or enriched(EC) conditions.METHODS To measure locomotor activity,adolescent rats(postnatal day 21-51)were injected with saline(1 mL·kg^(-1)) or nicotine(0.3 mg·kg^(-1)) subcutaneously,then placed in chamberswhere ambulatory activity was monitored for 30-min by computer for 14 daily sessions.α4β2*-andα7-n ACh receptor expression in the mesolimbic dopamine pathway was determined by quantitative autoradiography of [125 I]-epibatidine and [125 I]-bungarotoxinbinding,respectively,in 16 μmol·L^(-1) coronal sections.Values for receptor expression in fmol are ±s of 8 brains and compared by two-tailed,unpaired t-test with P<0.05 considered significant.RESULTS EC-rats are similarly sensitive as IC-rats to the locomotor effects of nicotine.[125 I]-epibatidine binding in the ventral tegmental area of EC-rats was reduced(2.8±0.3 fmo L) compared to IC-rats(4.0±0.4 fmo L);there was no difference in the nucleus accumbens.There was no difference between EC-and IC-rats in α7-n ACh receptor expression in the mesolimbic dopamine pathway.CONCLUSION Rearing environment differentially regulates n ACh receptor subtypes in EC and IC rats.These data suggest regulation of n ACh receptors by environmental factors may be a mechanism for the protective effect of enrichment against altered sensitivity to nicotine in genetically vulnerable individuals.The characterization of these mechanisms will aid in development of novel pharmacological tools mimicking the protection afforded by environmental enrichment in nicotine-sensitive individuals.
文摘The article aims to underline the impact of nicotine and pesticides on neuronal <i>α</i>7-nicotinic acetylcholine receptors expression in brainstem regions receiving cholinergic projections, given their fundamental role during the neuronal development. The in-depth histopathological/immunohistochemical examination of the autonomic nervous system performed at the “Lino Rossi” Research Center of the Milan University on a wide group of sudden unexpected fetal and infant deaths, highlighted the frequent hypodevelopment of brainstem structures checking the vital functions associated to altered expression of <i>α</i>7-nicotinic acetylcholine receptors and smoke absorption in pregnancy. A dysregulation of the catecholamine system was also observed in the cerebellar cortex of the same cases. However, in a not negligible percentage of sudden deaths with altered expression of <i>α</i>7-nicotinic receptors, the mothers never smoked but lived in rural areas. Specific analytical procedures showed the presence of agricultural pesticides in cerebral cortex samples of these victims. Therefore, it is possible to believe that the exposition to pesticides during pregnancy can produce the same harmful effects as nicotine on the nicotinic acetylcholine receptors. Moreover, alterations of <i>α</i>7-nicotinic acetylcholine receptors receptor expression were also detected in the lungs of many sudden perinatal death victims, allowing to consider even these findings as possible consequence of maternal exposure to toxic factors.
文摘Discoveries in the first few years of the 21st century have led to an understanding of important interactions between the nervous system and the inflammatory response at the molecular level, most notably the acetylcholine (ACh)- triggered,α7-nicotinic acetylcholine receptor (α7nAChR)- dependent nicotinic antinflammatory pathway. Studies using the α7nAChR agonist, nicotine, for the treatment of mucosal inflammation have been undertaken but the efficacy of nicotine as a treatment for inflammatory bowel diseases remains debatable. Further understanding of the nicotinic anti-inflammatory pathway and other endogenous anti-inflammatory mechanisms is required in order to develop refined and specific therapeutic strategies for the treatment of a number of inflammatory diseases and conditions, including periodontitis, psoriasis, sarcoidosis, and ulcerative colitis.
文摘Inflammation is important in the pathogenesis and development of cardiovascular diseases.Recent studies show that vagus nerve stimulation inhibits pro-inflammatory cytokine production through“the cholinergic anti-inflammatory pathway,”more specifically via theα7 nicotinic acetylcholine receptor(α7nAChR).In the current study,the role of the cholinergic anti-inflammatory pathway during septic shock,hypertension,and myocardial infarction is reviewed,and its possible clinical implications in cardiovascular diseases are discussed.