The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material ...The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material nonlinearity,geometrical nonlinearity and work hardening on the welding process is studied,and the differences in the welding temperature field,residual stress and welding distortion by A-LWB and by single laser welding-brazing(SLWB)are analyzed.The results show that the thermal cycle,residual stress distribution and welding distortion by the numerical simulation are in good agreement with the measured data by experiments,which verifies the effectiveness of FEM.Compared with the SLWB,A-LWB can make the high-temperature distribution zone of weld in width direction wider,decrease the transverse tensile stress in the weld and reduce the distribution range of longitudinal tensile stress.And the welding deformation also decreases to some extent.展开更多
Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of ...Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of tensile tests show that a significant improvement on mechanical properties of the butt joint is obtained using the modified flux. Moreover, obvious differences on microstructures of the interfaces were observed with Ni addition, that two intermetallic compound (IMC) layers at the interface change to one layer and the IMC thickness also decreases. Finally, effect mechanism of Ni was analyzed and discussed. Ni addition leads to an enrichment of element Si at the brazing interface, and furthermore suppresses the formation of intermetaUic compound. The reduction of IMC thickness is the main reason for the improvement of joint properties.展开更多
Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructure...Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructures of the joint were analyzed and the average tensile strength of the joint was estimated. The results show that a sound dissimilar metals joint is obtained by TIG welding-brazing. Slag and residual flux on steel surface can be removed by sanding easily. The joint has dual characteristics: in aluminum alloy side, it is a welded joint, while in stainless steel side, it is a brazed joint. The whole interface layer, unequal in thickness at different position, ranges from 5 μm to 25 μm. The average tensile strength of the butt joint reaches 120 MPa and the fracture occurs at the interface layer.展开更多
TIG welding-brazing process with high frequency induction hot wire technology was presented to create joints between 5A06 aluminum alloy and SUS32! stainless steel using ER1100 filler wire with different temperature. ...TIG welding-brazing process with high frequency induction hot wire technology was presented to create joints between 5A06 aluminum alloy and SUS32! stainless steel using ER1100 filler wire with different temperature. The joints were evaluated by mechanical test and microstructural analyses. The welding procedure using hot fiUer wire (400 ℃ ) significantly increases strength stability by 71% and average value of tensile strength by 30. 8 % of the joints, compared with cold wire. The research of microstructures in interfaces and welded seams reveals that using 400 ℃ hot filler wire can decrease the thickness of intermetallic compounds ( IMCs ) from 6 to 3.5 txm approximately, which is the main reason of mechanical property improvement.展开更多
Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (...Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (IMCs) in the interracial layer by optical metalloscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer ( EDS) , and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel suuface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 -7 μm thick and comprises approximately 5μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfacial layer and the phases transfer from ( Al + FeAl3 ) in aluminum side to ( FeAl3 + Fe2Al5 ) and ( α-Fe + FeAl) in steel side.展开更多
Aluminum and stainless steel plates with 1.5 mm thickness are joined by pulsed TIG welding-brazing process with ER1100, ER4043 and ER2319 fillers, separately. Good weld formation can be obtained by adjusting appropria...Aluminum and stainless steel plates with 1.5 mm thickness are joined by pulsed TIG welding-brazing process with ER1100, ER4043 and ER2319 fillers, separately. Good weld formation can be obtained by adjusting appropriate pulse parameters. The effects of the fillers on that the thickness of the intermetallic compound ( IMC ) and tensile strength of the joints are investigated. SEM results indicate layer with ER2319 filler is about 2 ~m, which is thinner than 2. 5 p^m of ER1100 filler and 3.5 txm of ER4043 filler. Moreover, the element distribution in both IMCs and welded seams with three fillers are different because of the different compositions of fillers. The results of mechanical property tests suggest that the joint strength with ER2319 filler is the highest, while the joint impact energy is the lowest. The joint with ERllOO filler exhibits the best comprehensive mechanical pet.formanee.展开更多
The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and micro...The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.展开更多
Aluminum killed cold rolled steel used for automobiles was welded in this paper by using CO 2 laser with wavelength 10.6μm.The experiment shows that high quality of welding can be realized at welding speed of 4 500m...Aluminum killed cold rolled steel used for automobiles was welded in this paper by using CO 2 laser with wavelength 10.6μm.The experiment shows that high quality of welding can be realized at welding speed of 4 500mm/min by optimizing the parameters.The strength and hardness of laser welded joints for aluminum killed cold rolled steel increased compared to those of the base metal while the formability decreased.Forming limit diagram of joint material indicated that the laser weld seam should avoid the maximum deformation area of automobile parts during the designing period for the position of weld seam.展开更多
Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base ...Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.展开更多
Pulsed laser welding was used in joining pure aluminum to stainless steel in a lap joint configuration. It is found that the mechanical properties of the laser joints were closely correlated with the bead geometry, i....Pulsed laser welding was used in joining pure aluminum to stainless steel in a lap joint configuration. It is found that the mechanical properties of the laser joints were closely correlated with the bead geometry, i.e., penetration depth. In order to study the correlation, two typical laser welds with different penetration depths were analyzed. In high penetration depth (354 μm) joint, Al-rich Fe?Al IMCs with microcracks were formed at the Al/fusion zone (FZ) interface. The joint strength was found to be (27.2±1.7) N/mm and three failure modes were observed near the Al/FZ interface. In low penetration depth (108 μm) joint, Fe-rich Fe?Al IMCs without any defect were formed at the Al/FZ interface. The joint strength was found to be (46.2±1.9) N/mm and one failure mode was observed across the FZ.展开更多
Two dissimilar materials, aluminum alloy and aluminum-coated steel, were joined by cold metal transfer process using AlSi5 filler wire. To this end, the steel was coated with Al-Si. The steel did not melt and aluminum...Two dissimilar materials, aluminum alloy and aluminum-coated steel, were joined by cold metal transfer process using AlSi5 filler wire. To this end, the steel was coated with Al-Si. The steel did not melt and aluminum was melt to form the joint during the process, it was actually cold metal transfer welding-brazing. The macrostructure, microstructure, alloy element distribution, and inter-metallic compounds were analyzed by optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. It was found that the Al-Si coating dissolved into the weld metal. The pre-existing thin Fe-Al- Si ternary inter-metallic compounds in the interface between the Ak-Si coating layer and base metal steel also partially dissolved into the weld zone, tending to reduce the thickness of inter-metallic compounds. Approximate 3 μm thick undissolved intermetallic compound was found at the interface after welding which could guarantee sound bonding strength in dissimilar materials joining. The sample was fractured at the fusion zone near the aluminum side in the tensile test. The ultimate tensile strength was about 156 MPa, and the fracture mode is ductile failure in nature according to its morphology.展开更多
基金Project(51465031)supported by the National Natural Science Foundation of ChinaProject(17JR5RA126)supported by the Natural Science Foundation of Gansu Province,China
文摘The thermo-elastic.plastic finite element method(FEM)is used to simulate the thermo-mechanical behavior of Al/steel tungsten inert gas(TIG)arc-assisted laser welding-brazing(A-LWB)butt joint.The influence of material nonlinearity,geometrical nonlinearity and work hardening on the welding process is studied,and the differences in the welding temperature field,residual stress and welding distortion by A-LWB and by single laser welding-brazing(SLWB)are analyzed.The results show that the thermal cycle,residual stress distribution and welding distortion by the numerical simulation are in good agreement with the measured data by experiments,which verifies the effectiveness of FEM.Compared with the SLWB,A-LWB can make the high-temperature distribution zone of weld in width direction wider,decrease the transverse tensile stress in the weld and reduce the distribution range of longitudinal tensile stress.And the welding deformation also decreases to some extent.
基金Acknowledgement The authors would like to appreciate the financial support from the National Natural Science Foundation of China (Grant No. 50874033).
文摘Effects of Ni on microstructure and properties of aluminum-stainless steel TIG welding-brazing joint with Al-Si filler were studied. Different mass percentage of Ni powder was added in the flux separately. Results of tensile tests show that a significant improvement on mechanical properties of the butt joint is obtained using the modified flux. Moreover, obvious differences on microstructures of the interfaces were observed with Ni addition, that two intermetallic compound (IMC) layers at the interface change to one layer and the IMC thickness also decreases. Finally, effect mechanism of Ni was analyzed and discussed. Ni addition leads to an enrichment of element Si at the brazing interface, and furthermore suppresses the formation of intermetaUic compound. The reduction of IMC thickness is the main reason for the improvement of joint properties.
基金Supported by National Natural Science Foundation of China (50874033).
文摘Dissimilar metals TIG welding-brazing of 5A06 aluminum alloy to SUS321 stainless steel has been carried out with Al-Sil2 eutectic filler metal and modified non-corrosive flux. The surface appearance and microstructures of the joint were analyzed and the average tensile strength of the joint was estimated. The results show that a sound dissimilar metals joint is obtained by TIG welding-brazing. Slag and residual flux on steel surface can be removed by sanding easily. The joint has dual characteristics: in aluminum alloy side, it is a welded joint, while in stainless steel side, it is a brazed joint. The whole interface layer, unequal in thickness at different position, ranges from 5 μm to 25 μm. The average tensile strength of the butt joint reaches 120 MPa and the fracture occurs at the interface layer.
基金Acknowledgement The authors would like to appreciate the financial support from the National Natural Science Foundation of China (Grant No. 50874033 ).
文摘TIG welding-brazing process with high frequency induction hot wire technology was presented to create joints between 5A06 aluminum alloy and SUS32! stainless steel using ER1100 filler wire with different temperature. The joints were evaluated by mechanical test and microstructural analyses. The welding procedure using hot fiUer wire (400 ℃ ) significantly increases strength stability by 71% and average value of tensile strength by 30. 8 % of the joints, compared with cold wire. The research of microstructures in interfaces and welded seams reveals that using 400 ℃ hot filler wire can decrease the thickness of intermetallic compounds ( IMCs ) from 6 to 3.5 txm approximately, which is the main reason of mechanical property improvement.
基金Supported by National Natural Science Foundation of China (50874033).
文摘Dissimilar metals TIG welding-brazing of aluminum alloy and non-coated stainless steel was investigated. The resultant joint was characterized in order to identify the phases and the brittle intermetallic compounds (IMCs) in the interracial layer by optical metalloscope (OM), scanning electron microscopy (SEM) and energy dispersive spectrometer ( EDS) , and the cracked joint was analyzed in order to understand the cracking mechanism of the joint. The results show that the microfusion of the stainless steel can improve the wetting and spreading of liquid aluminum base filler metal on the steel suuface and the melted steel accelerates the formation of mass of brittle IMCs in the interracial layer, which causes the joint cracking badly. The whole interfacial layer is 5 -7 μm thick and comprises approximately 5μm-thickness reaction layer in aluminum side and about 2 μm-thickness diffusion layer in steel side. The stable Al-rich IMCs are formed in the interfacial layer and the phases transfer from ( Al + FeAl3 ) in aluminum side to ( FeAl3 + Fe2Al5 ) and ( α-Fe + FeAl) in steel side.
基金The authors would like to appreciate the financial support from the National Natural Science Foundation of China (Grant No. 50874033 ).
文摘Aluminum and stainless steel plates with 1.5 mm thickness are joined by pulsed TIG welding-brazing process with ER1100, ER4043 and ER2319 fillers, separately. Good weld formation can be obtained by adjusting appropriate pulse parameters. The effects of the fillers on that the thickness of the intermetallic compound ( IMC ) and tensile strength of the joints are investigated. SEM results indicate layer with ER2319 filler is about 2 ~m, which is thinner than 2. 5 p^m of ER1100 filler and 3.5 txm of ER4043 filler. Moreover, the element distribution in both IMCs and welded seams with three fillers are different because of the different compositions of fillers. The results of mechanical property tests suggest that the joint strength with ER2319 filler is the highest, while the joint impact energy is the lowest. The joint with ERllOO filler exhibits the best comprehensive mechanical pet.formanee.
基金financially supported by the National Natural Science Foundation of China(No.51704001)the Natural Science Foundation of Anhui Province,China(No.2008085J23)the Talent Project of Anhui Province,China(Z175050020001)。
文摘The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.
文摘Aluminum killed cold rolled steel used for automobiles was welded in this paper by using CO 2 laser with wavelength 10.6μm.The experiment shows that high quality of welding can be realized at welding speed of 4 500mm/min by optimizing the parameters.The strength and hardness of laser welded joints for aluminum killed cold rolled steel increased compared to those of the base metal while the formability decreased.Forming limit diagram of joint material indicated that the laser weld seam should avoid the maximum deformation area of automobile parts during the designing period for the position of weld seam.
文摘Effects of laser pulse distance and reinforcing of 5456 aluminum alloy were investigated on laser weldability of Al alloy to duplex stainless steel (DSS) plates. The aluminum alloy plate was reinforced by nickel-base BNi-2 brazing powder via friction stir processing. The DSS plates were laser welded to the Al5456/BNi-2 composite and also to the Al5456 alloy plates. The welding zones were studied by scanning electron microscopy, X-ray diffractometry, micro-hardness and shear tests. The weld interface layer became thinner from 23 to 5 μm, as the laser pulse distance was increased from 0.2 to 0.5 mm. Reinforcing of the Al alloy modified the phases at interface layer from Al-Fe intermetallic compounds (IMCs) in the DSS/Al alloy weld, to Al-Ni-Fe IMCs in the DSS/Al composite one, since more nickel was injected in the weld pool by BNi-2 reinforcements. This led to a remarkable reduction in crack tendency of the welds and decreased the hardness of the interface layer from ~950 HV to ~600 HV. Shear strengths of the DSS/Al composite welds were significantly increased by ~150%, from 46 to 114 MPa, in comparison to the DSS/Al alloy ones.
基金Project(51265035)supported by the National Natural Science Foundation of ChinaProject(20151BAB206042)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(GJJ150020)supported by the Jiangxi Provincial Department of Education,China
文摘Pulsed laser welding was used in joining pure aluminum to stainless steel in a lap joint configuration. It is found that the mechanical properties of the laser joints were closely correlated with the bead geometry, i.e., penetration depth. In order to study the correlation, two typical laser welds with different penetration depths were analyzed. In high penetration depth (354 μm) joint, Al-rich Fe?Al IMCs with microcracks were formed at the Al/fusion zone (FZ) interface. The joint strength was found to be (27.2±1.7) N/mm and three failure modes were observed near the Al/FZ interface. In low penetration depth (108 μm) joint, Fe-rich Fe?Al IMCs without any defect were formed at the Al/FZ interface. The joint strength was found to be (46.2±1.9) N/mm and one failure mode was observed across the FZ.
基金This research is supported by the National Natural Science Foundation of China ( No. 51005101 ), Jiamusi University Scientific Research Project (12010 -118) and State Key Laboratory of Advanced Welding Production Technology Project (AWJ-M13 -04).
文摘Two dissimilar materials, aluminum alloy and aluminum-coated steel, were joined by cold metal transfer process using AlSi5 filler wire. To this end, the steel was coated with Al-Si. The steel did not melt and aluminum was melt to form the joint during the process, it was actually cold metal transfer welding-brazing. The macrostructure, microstructure, alloy element distribution, and inter-metallic compounds were analyzed by optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. It was found that the Al-Si coating dissolved into the weld metal. The pre-existing thin Fe-Al- Si ternary inter-metallic compounds in the interface between the Ak-Si coating layer and base metal steel also partially dissolved into the weld zone, tending to reduce the thickness of inter-metallic compounds. Approximate 3 μm thick undissolved intermetallic compound was found at the interface after welding which could guarantee sound bonding strength in dissimilar materials joining. The sample was fractured at the fusion zone near the aluminum side in the tensile test. The ultimate tensile strength was about 156 MPa, and the fracture mode is ductile failure in nature according to its morphology.