This study aimed to comprehensively investigate the essential considerations in designing adaptive clothing for women with lower limb prostheses in Saudi Arabia. Employing a qualitative methodology, the research entai...This study aimed to comprehensively investigate the essential considerations in designing adaptive clothing for women with lower limb prostheses in Saudi Arabia. Employing a qualitative methodology, the research entailed semi-structured, in-depth interviews with women utilizing lower limb prostheses and prosthetic specialists. This approach was selected to unearth pivotal design prerequisites and comprehend the specific challenges these women encounter within the realm of clothing. The utilization of selective sampling facilitated the collection of intricate and valuable insights. A Functional, Expressive, and Aesthetic (FEA) User Needs model was utilized to scrutinize participant feedback. Functional requisites encompass ease of dressing and undressing, accessibility to the prosthetic limb, comfort, mobility with the prosthesis, and appropriate fit. Additionally, participants highlighted various expressive needs, including privacy preservation, modesty, camouflaging disability appearances, maintaining alignment with non-disabled women’s fashion, and considerations about the aesthetic aspects of garments.展开更多
The primary objective of this study is to apply the Evaluation Grid Method(EGM)and the continuous fuzzy Kano quality model to explore the cognitive preferences of Taiwan China residents regarding the beauty of Taiwan...The primary objective of this study is to apply the Evaluation Grid Method(EGM)and the continuous fuzzy Kano quality model to explore the cognitive preferences of Taiwan China residents regarding the beauty of Taiwan’s China landscape paintings.The aim is to contribute to the development of social and cultural art and promote the widespread appeal of art products.Through a literature review,consultations with aesthetic experts,and the application of Miryoku Engineering’s EGM,this paper consolidates the factors that contribute to the attractiveness of painting art products among Taiwan China residents,taking into account various aesthetic qualities.Simultaneously,the paper introduces the use of the triangular fuzzy golden ratio scale semantics,specifically the equal-ratio aesthetic scale semantics,as a replacement for the traditional subjective consciousness model.Departing from the traditional discrete Kano model that employs the mode as the standard for evaluating quality,this study applies triangular fuzzy numbers to the continuous Kano quality model to analyze the diverse preferences and evaluation standards of the public.The hope is that this research methodology will not only deepen Taiwan China residents’understanding and aesthetic literacy of painting art but also serve as a reference for the popularization of art products.展开更多
In this paper many illustratioiis of engineering photca are provided topresent the achievements of concrete structtires on architectural modelling, ob-tained at home and abroad- Finally, the author suggests an opinion...In this paper many illustratioiis of engineering photca are provided topresent the achievements of concrete structtires on architectural modelling, ob-tained at home and abroad- Finally, the author suggests an opinion on the tcachingof the specialities of展开更多
Excessive vibration of aircraft wings during flight is harmful and may cause propagation of existing cracks in the material, leading to catastrophic failures as a result of material fatigue. This study investigates th...Excessive vibration of aircraft wings during flight is harmful and may cause propagation of existing cracks in the material, leading to catastrophic failures as a result of material fatigue. This study investigates the variations of modal characteristics of aircraft wings with respect to changes in the structural configurations. We develop parametric Computer-Aided Design (CAD) models to capture new design intend on the aircraft wing architectures. Subsequent Finite Element Analysis (FEA) based vibration analysis is performed to study the effects of architecture changes on the wing’s natural frequencies and mode shapes. It is concluded that the spar placement and the number of ribs have significant influence on the wing’s natural vibration properties. Integrating CAD modelling and FEA vibration analysis enables designers to develop alternative wing architectures to implement design requirements in the preliminary design stage.展开更多
To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is...To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.展开更多
The exploration of low-strain and high-performance electrode is a crucial issue for aqueous potassiumion battery(AKIB).Herein,a novel potassium mediated iron/manganese binary hexacyanoferrate nanocuboid,i.e.,K_(x)Fe_(...The exploration of low-strain and high-performance electrode is a crucial issue for aqueous potassiumion battery(AKIB).Herein,a novel potassium mediated iron/manganese binary hexacyanoferrate nanocuboid,i.e.,K_(x)Fe_(y)Mn_(1-y)[Fe(CN)_(6)]·nH_(2)O(KFeMnHCF)nanocuboid,with the concentration-gradient(CG)structure is designed as a high-performance cathode for AKIB.Internal the CG-KFeMnHCF nanocuboids,the manganese content gradually decreases from the interior to the surface and the iron content changes reverse,resulting in the concentration-gradient structure.Both experimental and finite element simulation(FEA)results demonstrate the lower internal stress and better mechanical characteristics of CG structured nanocuboid than the homogenous structured one upon ion intercalation/deintercalation processes.Meanwhile,the electrochemical testing and theoretical calculation(DFT)results disclose the substitution of Fe to Mn in the KMnHCF crystal results in the enhanced electronic conductivity,potassium migration and electrochemical kinetics.Taken both advantages from the well-designed architecture and optimized crystal structure,the CG-KFeMnHCF achieves the superior rate capability and ultrahigh stability in aqueous potassium ion system.In particular,the CG-KFe_(0.31)Mn_(0.69)HCF achieves the best comprehensive properties among all the samples.The full AKIBs based on CG-KFe_(0.31)Mn_(0.69)HCF cathode achieves the high energy density(83 Wh kg^(-1)),superior power density,high capacity retention(83%)over high-rate long-term cycles,good adaptation to a wide temperature range(-20 to 40℃)and high reliability even under outside deformations.Therefore,this work not only provides a new clue to design the highperformance cathode,but also promotes the applications of AKIBs for diverse electronics and wide working environments.展开更多
Previous settlement research has focused on architectural construction techniques and ecological experience in layout and site selection.Mountain?settlements?are?often?ignored?for?their?aesthetic value as the eyes of ...Previous settlement research has focused on architectural construction techniques and ecological experience in layout and site selection.Mountain?settlements?are?often?ignored?for?their?aesthetic value as the eyes of the?landscape.In the context of rural revitalization,it is of great significance to explore and study the aesthetic value of mountain settlements to integrate rural tourism landscape resources and boost rural economy.This paper interpreted the aesthetic value of traditional mountain settlements from the aspects of landscape pattern,street pattern,structural modeling,scale and sense of history,and revealed their role in making the finishing point and turning stone into gold in the landscape.展开更多
The paper presents the construction of a steel footbridge in the People’s Park in Lublin.The initiation and development of the architectural design of an interesting and,as it eventually turned out,aesthetically plea...The paper presents the construction of a steel footbridge in the People’s Park in Lublin.The initiation and development of the architectural design of an interesting and,as it eventually turned out,aesthetically pleasing footbridge is discussed.Two teams of architects and bridge engineers worked in parallel on the design.The design process of the footbridge structure is discussed along with its trial installation and on-site construction.The span of the footbridge is short,but its structure is innovative.For this reason its numerical model was developed used as a basis for an analysis of the dynamic response of the designed structure.The basic element of the acceptance procedure was constituted by a dynamic test load and an analysis of the pedestrian footbridge user comfort.Last but not least,the final section reviews the aesthetic canons of bridges and focuses on the footbridge in question in this context.A statistical measure of the aesthetic impression induced by a visit to the footbridge was applied resulting in a predictable and obvious final aesthetical assessment.展开更多
Aconduction-cooled superconducting magnet with central field of 10Tand warmbore of 100 mmwas designed based on a Nb3Sn and two NbTi superconducting coils.At the first stage,the NbTi coils havebeen fabricated andtested...Aconduction-cooled superconducting magnet with central field of 10Tand warmbore of 100 mmwas designed based on a Nb3Sn and two NbTi superconducting coils.At the first stage,the NbTi coils havebeen fabricated andtested.Atwo-stage 4 KGifford-McMahon(GM) cryocooler withthe second-stage powerin1W,4.2Kis used to cool the magnet fromroomtemperature to 4 K.The superconducting magnet with thesame power supply has the operating current of 116A.The magnet can be rotated with a support frame to beoperated with either horizontal or vertical position.Apair of Bi-2223 hightemperature superconductingcurrentleads was employedto reduce heat leakage into 4.2Klevel.The NbTi coils reachto the operating current of120Awithout training effect to be observed duringchargingof the magnet during40 minutes chargingtime andgenerate the center field of 6.5T.The training effect inthe NbTi magnet directly cool-down by cryocooler andinter-winding support structure in magnet can be remarkablyimproved.The superconducting magnet has beenstably operatedfor more than 275 hours with 6.5T.In this paper,the detailed design,fabrication,stressanalysis and quench protection characteristics are presented.展开更多
文摘This study aimed to comprehensively investigate the essential considerations in designing adaptive clothing for women with lower limb prostheses in Saudi Arabia. Employing a qualitative methodology, the research entailed semi-structured, in-depth interviews with women utilizing lower limb prostheses and prosthetic specialists. This approach was selected to unearth pivotal design prerequisites and comprehend the specific challenges these women encounter within the realm of clothing. The utilization of selective sampling facilitated the collection of intricate and valuable insights. A Functional, Expressive, and Aesthetic (FEA) User Needs model was utilized to scrutinize participant feedback. Functional requisites encompass ease of dressing and undressing, accessibility to the prosthetic limb, comfort, mobility with the prosthesis, and appropriate fit. Additionally, participants highlighted various expressive needs, including privacy preservation, modesty, camouflaging disability appearances, maintaining alignment with non-disabled women’s fashion, and considerations about the aesthetic aspects of garments.
文摘The primary objective of this study is to apply the Evaluation Grid Method(EGM)and the continuous fuzzy Kano quality model to explore the cognitive preferences of Taiwan China residents regarding the beauty of Taiwan’s China landscape paintings.The aim is to contribute to the development of social and cultural art and promote the widespread appeal of art products.Through a literature review,consultations with aesthetic experts,and the application of Miryoku Engineering’s EGM,this paper consolidates the factors that contribute to the attractiveness of painting art products among Taiwan China residents,taking into account various aesthetic qualities.Simultaneously,the paper introduces the use of the triangular fuzzy golden ratio scale semantics,specifically the equal-ratio aesthetic scale semantics,as a replacement for the traditional subjective consciousness model.Departing from the traditional discrete Kano model that employs the mode as the standard for evaluating quality,this study applies triangular fuzzy numbers to the continuous Kano quality model to analyze the diverse preferences and evaluation standards of the public.The hope is that this research methodology will not only deepen Taiwan China residents’understanding and aesthetic literacy of painting art but also serve as a reference for the popularization of art products.
文摘In this paper many illustratioiis of engineering photca are provided topresent the achievements of concrete structtires on architectural modelling, ob-tained at home and abroad- Finally, the author suggests an opinion on the tcachingof the specialities of
文摘Excessive vibration of aircraft wings during flight is harmful and may cause propagation of existing cracks in the material, leading to catastrophic failures as a result of material fatigue. This study investigates the variations of modal characteristics of aircraft wings with respect to changes in the structural configurations. We develop parametric Computer-Aided Design (CAD) models to capture new design intend on the aircraft wing architectures. Subsequent Finite Element Analysis (FEA) based vibration analysis is performed to study the effects of architecture changes on the wing’s natural frequencies and mode shapes. It is concluded that the spar placement and the number of ribs have significant influence on the wing’s natural vibration properties. Integrating CAD modelling and FEA vibration analysis enables designers to develop alternative wing architectures to implement design requirements in the preliminary design stage.
基金Financial support provided by Correlated Solutions Incorporated to perform StereoDIC experimentsthe Department of Mechanical Engineering at the University of South Carolina for simulation studies is deeply appreciated.
文摘To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.
基金supported by the Innovation Foundation of Graduate Student of Harbin Normal University(Grant No.HSDSSCX2020-18)the Natural Science Foundation of Heilongjiang Province,China(Grant No.TD2020B001)the Opening Project of State Key Laboratory of Advanced Chemical Power Sources(Grant No.SKL-ACPS-C-25)。
文摘The exploration of low-strain and high-performance electrode is a crucial issue for aqueous potassiumion battery(AKIB).Herein,a novel potassium mediated iron/manganese binary hexacyanoferrate nanocuboid,i.e.,K_(x)Fe_(y)Mn_(1-y)[Fe(CN)_(6)]·nH_(2)O(KFeMnHCF)nanocuboid,with the concentration-gradient(CG)structure is designed as a high-performance cathode for AKIB.Internal the CG-KFeMnHCF nanocuboids,the manganese content gradually decreases from the interior to the surface and the iron content changes reverse,resulting in the concentration-gradient structure.Both experimental and finite element simulation(FEA)results demonstrate the lower internal stress and better mechanical characteristics of CG structured nanocuboid than the homogenous structured one upon ion intercalation/deintercalation processes.Meanwhile,the electrochemical testing and theoretical calculation(DFT)results disclose the substitution of Fe to Mn in the KMnHCF crystal results in the enhanced electronic conductivity,potassium migration and electrochemical kinetics.Taken both advantages from the well-designed architecture and optimized crystal structure,the CG-KFeMnHCF achieves the superior rate capability and ultrahigh stability in aqueous potassium ion system.In particular,the CG-KFe_(0.31)Mn_(0.69)HCF achieves the best comprehensive properties among all the samples.The full AKIBs based on CG-KFe_(0.31)Mn_(0.69)HCF cathode achieves the high energy density(83 Wh kg^(-1)),superior power density,high capacity retention(83%)over high-rate long-term cycles,good adaptation to a wide temperature range(-20 to 40℃)and high reliability even under outside deformations.Therefore,this work not only provides a new clue to design the highperformance cathode,but also promotes the applications of AKIBs for diverse electronics and wide working environments.
文摘Previous settlement research has focused on architectural construction techniques and ecological experience in layout and site selection.Mountain?settlements?are?often?ignored?for?their?aesthetic value as the eyes of the?landscape.In the context of rural revitalization,it is of great significance to explore and study the aesthetic value of mountain settlements to integrate rural tourism landscape resources and boost rural economy.This paper interpreted the aesthetic value of traditional mountain settlements from the aspects of landscape pattern,street pattern,structural modeling,scale and sense of history,and revealed their role in making the finishing point and turning stone into gold in the landscape.
文摘The paper presents the construction of a steel footbridge in the People’s Park in Lublin.The initiation and development of the architectural design of an interesting and,as it eventually turned out,aesthetically pleasing footbridge is discussed.Two teams of architects and bridge engineers worked in parallel on the design.The design process of the footbridge structure is discussed along with its trial installation and on-site construction.The span of the footbridge is short,but its structure is innovative.For this reason its numerical model was developed used as a basis for an analysis of the dynamic response of the designed structure.The basic element of the acceptance procedure was constituted by a dynamic test load and an analysis of the pedestrian footbridge user comfort.Last but not least,the final section reviews the aesthetic canons of bridges and focuses on the footbridge in question in this context.A statistical measure of the aesthetic impression induced by a visit to the footbridge was applied resulting in a predictable and obvious final aesthetical assessment.
文摘Aconduction-cooled superconducting magnet with central field of 10Tand warmbore of 100 mmwas designed based on a Nb3Sn and two NbTi superconducting coils.At the first stage,the NbTi coils havebeen fabricated andtested.Atwo-stage 4 KGifford-McMahon(GM) cryocooler withthe second-stage powerin1W,4.2Kis used to cool the magnet fromroomtemperature to 4 K.The superconducting magnet with thesame power supply has the operating current of 116A.The magnet can be rotated with a support frame to beoperated with either horizontal or vertical position.Apair of Bi-2223 hightemperature superconductingcurrentleads was employedto reduce heat leakage into 4.2Klevel.The NbTi coils reachto the operating current of120Awithout training effect to be observed duringchargingof the magnet during40 minutes chargingtime andgenerate the center field of 6.5T.The training effect inthe NbTi magnet directly cool-down by cryocooler andinter-winding support structure in magnet can be remarkablyimproved.The superconducting magnet has beenstably operatedfor more than 275 hours with 6.5T.In this paper,the detailed design,fabrication,stressanalysis and quench protection characteristics are presented.