ZnO nanopowder is successfully synthesized by annealing the precursors in oxygen gas using the chemical precipitation method. Structural and optical properties of thus synthesized ZnO nanopowder are characterized by s...ZnO nanopowder is successfully synthesized by annealing the precursors in oxygen gas using the chemical precipitation method. Structural and optical properties of thus synthesized ZnO nanopowder are characterized by scanning electron microscopy (SEM) and photoluminescence (PL). The morphology of ZnO nanopowders evolves from nanorod to cobble as annealing temperature increases from 500 to 1000℃, while spiral structures are observed in the samples annealed at 900 and 1000℃. The PL spectra of ZnO nanopowder consist of largely green and yellow emission bands. The green emission from ZnO nanopowder depends strongly on the annealing temperature with a peak intensity at a temperature lower than 800℃ while the yellow emission is associated with interstitial oxygen Oi.展开更多
Undoped ZnO nanostructures were deposited on SiO2/Si substrates via radio 11:equency magnetron sputtenng at different deposition temperatures (room temperature, 200, 300, and 400 ℃). The prepared samples were anne...Undoped ZnO nanostructures were deposited on SiO2/Si substrates via radio 11:equency magnetron sputtenng at different deposition temperatures (room temperature, 200, 300, and 400 ℃). The prepared samples were annealed at 500 ℃ for 2 h under an N2 flow. The structural, surface morphological, optical, and photoresponse characteristics of ZnO nanostructures as deposited and after annealing were then investigated. The energy bandgaps of all samples after annealing (3.22-3.28 eV) decreased compared with those of the as-deposited specimens. The barrier height increased when the deposition temperature increased and reached 0.77 eV at 400 ℃ after annealing with a leakage current of 0.17 gA at a 5 V bias. The UV photodetector device which was deposited at the optimal temperature of 300 ℃, has 12.51 × 10^3% pho- tosensitivity, 2.259 pA dark current, 0.508 s response time, and 0.466 s recovery time. The dark current significantly decreased for all samples after annealing. The proposed UV photodetectors exhibit high performance, high photosensi- tivity, shorter response and recovery times, and excellent stability at lower bias voltages of 5 and 2 V.展开更多
ZnO nanoparticles films were prepared via sol-gel process and incorporated into inverted organic photovoltaic devices with a structure of ITO/ZnO/P3HT:PCBM/MoO3/Ag, in which ZnO film served as an electron selective l...ZnO nanoparticles films were prepared via sol-gel process and incorporated into inverted organic photovoltaic devices with a structure of ITO/ZnO/P3HT:PCBM/MoO3/Ag, in which ZnO film served as an electron selective layer. The effects of annealing temperature of ZnO film on the device performance were investigated. When the annealing temperature was 300℃, a well-arranged ZnO thin film was obtained, and the optimized device had doubled short circuit current density (Jsc) and seven-fold higher power conversion efficiency (PCE) compared to the devices without ZnO film. This improvement could be attributed to the enlarged interfacial area of ZnO/active layer and better energy band matching which causes an efficient electron extraction and a decreased interface energy barrier. At particularly high annealing temperature, dramatically increased sheet resistance of indium tin oxide (ITO) was found to cause PCE deterioration. Our finding indicates that it is highly important to investigate both morphology and electrical effects for understanding and optimizing organic photovoltaic (OPV) performance.展开更多
The effect of annealing temperature on the formation of the PtSi phase. distribution of silicides and the surface morphologies of silicides films is investigated by XPS. AFM. It is shown that the phase sequences of t...The effect of annealing temperature on the formation of the PtSi phase. distribution of silicides and the surface morphologies of silicides films is investigated by XPS. AFM. It is shown that the phase sequences of the films change from Pt-Pt2Si-PtSi-Si to Pt+Pt2Si+PtSi-PtSi-Si or Pt+Pt2Si+PtSi-PtSi-st with an increase of annealing temperature and the reason for the formation of mixed layers is discussed.展开更多
Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the opt...Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated展开更多
The magnetic aftereffect (MAE) and the positron lifetime were measured at room temperature on the Fe_73.5Cu_1 Nb_3Si_13.5 B_9 alloy in as-cast and after annealing at temperature T_a in the range from 450 to 750℃ It w...The magnetic aftereffect (MAE) and the positron lifetime were measured at room temperature on the Fe_73.5Cu_1 Nb_3Si_13.5 B_9 alloy in as-cast and after annealing at temperature T_a in the range from 450 to 750℃ It was found that both the MAE and the positron lifetime decrease with increasing T_a when T_≤600℃. While Ta≥650℃, MAE is essentially suppressed, and two positron lifetimes appear.展开更多
We investigated the variation of permeability spectra and relaxation frequency in Co-based amorphous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensi...We investigated the variation of permeability spectra and relaxation frequency in Co-based amorphous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensitively with the annealing energy, where the spectra could be decomposed into two contributions from domain wall motion,μdw(f) and rotational magnetization μrot(f) by analyzing the measured spectra as a function of driving ac field amplitude. The magnitude of μdw(f) and μrot(f) in dc limit shows maximum at Ea = 176 mJ. The maximum relaxation frequency for rotational magnetization, determined by μ'(f) curve, is about 700 kHz at Ea=62 mJ but that for wall motion is about 26 kHz at 230 mJ. These variations reflect the increase of magnetic softness and microstructural change by the annealing.展开更多
Chemically synthesized ZnS thin film is found to be a good x-ray radiation sensor. We report the effect of annealing on the x-ray radiation detection sensitivity of a ZnS thin film synthesized by a chemical bath depos...Chemically synthesized ZnS thin film is found to be a good x-ray radiation sensor. We report the effect of annealing on the x-ray radiation detection sensitivity of a ZnS thin film synthesized by a chemical bath deposition technique. The chemically synthesized ZnS films are annealed at 333, 363 and 393K for 1 h. Structural analyses show that the lattice defects in the films decrease with annealing. Further, the band gap is also found to decrease from 3.38 to 3.21 eV after annealing at 393K. Current-voltage characteristics of the films are studied under dark and x-ray irradiation conditions. Due to the decrease of lattice defects and band gap, the conductivity under dark conditions is found to increase from 2.06 × 10^-6 to 1.69 × 10^-5 S/em, while that under x-ray irradiation increases from 4.13 × 10^-5 to 5.28 ×10^-5 S/cm. On the other hand, the x-ray radiation detection sensitivity of the films is found to decrease with annealing. This decrease of detection sensitivity is attributed to the decrease of the band gap as well as some structural and surface morphological changes occurring after annealing.展开更多
Effects of thermal annealing on the optical, electrical and structural properties of 3 vol% 1,8-diiodoctane added P3HT:PC61BM active layers are investigated, concerning the performance of the bulk heterojunction poly...Effects of thermal annealing on the optical, electrical and structural properties of 3 vol% 1,8-diiodoctane added P3HT:PC61BM active layers are investigated, concerning the performance of the bulk heterojunction polymer so- lar cells by changing the heat temperature. The structure information of the active layer is analyzed by using the grazing incidence wide angle scattering diffraction combined with the optical microscope, light absorption, pho- toluminescence and the external quantum efficiency spectra. The relationship between the detail of morphology and the optical, electrical properties is investigated.展开更多
The effect of high-temperature annealing on the yellow and blue luminescence of the undoped GaN is investi- gated by photoluminescenee (PL) and x-ray photoelectron spectroscopy (XPS). It is found that the band-edg...The effect of high-temperature annealing on the yellow and blue luminescence of the undoped GaN is investi- gated by photoluminescenee (PL) and x-ray photoelectron spectroscopy (XPS). It is found that the band-edge emission in the GaN apparently increases, and the yellow luminescence (YL) and blue luminescence (BL) bands dramatically decrease after annealing at 700℃. At the annealing temperature higher than 900℃, the YL and BL intensities show an enhancement for the nitrogen annealed GaN. This fact should be attributed to the increment of the Ga and N vacancies in the GaN decomposition. However, the integrated PL intensity of the oxygen an- nealed GaN decreases at the temperature ranging from 900℃ to 1000℃. This results from the capture of many photo-generated holes by high-density surface states. XPS characterization confirms that the high-density surface states mainly originate from the incorporation of oxygen atoms into GaN at the high annealing temperature, and even induces the 0.34eV increment of the upward band bending for the oxygen annealed GaN at 1000℃.展开更多
Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order ...Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.展开更多
This paper reports that Ni and Ti/4H-SiC Schottky barrier diodes (SBDs) were fabricated and irradiated with 1 MeV electrons up to a dose of 3.43 × 10^14 e/cm2. After radiation, the Schottky barrier height φB o...This paper reports that Ni and Ti/4H-SiC Schottky barrier diodes (SBDs) were fabricated and irradiated with 1 MeV electrons up to a dose of 3.43 × 10^14 e/cm2. After radiation, the Schottky barrier height φB of the Ni/4H-SiC SBD increased from 1.20 eV to 1.21 eV, but decreased from 0.95 eV to 0.94 eV for the Ti/4H-SiC SBD. The degradation of φB could be explained by interface states of changed Schottky contacts. The on-state resistance Rs of both diodes increased with the dose, which can be ascribed to the radiation defects. The reverse current of the Ni/4H-SiC SBD slightly increased, but for the Ti/4H-SiC SBD it basically remained the same. At room temperature, φB of the diodes recovered completely after one week, and the RS partly recovered.展开更多
Silicon dominates the electronic industry, but its poor optical properties mean that it is not preferred for photonic applications. Visible photoluminescence (PL) was observed from porous Si at room temperature in 1...Silicon dominates the electronic industry, but its poor optical properties mean that it is not preferred for photonic applications. Visible photoluminescence (PL) was observed from porous Si at room temperature in 1990, but the origin of these light emissions is still not fully understood. This paper reports that an Si nanocrystal, silicon nanoporous pillar array (Si-NPA) with strong visible PL has been prepared on a Si wafer substrate by the hydrothermal etching method. After annealing in 02 atmosphere, the hydride coverage of the Si pillar internal surface is replaced by an oxide layer, which comprises of a great quantity of Si nanocrystal (nc-Si) particles and each of them axe encapsulated by an Si oxide layer. Meanwhile a transition from efficient triple-peak PL bands from blue to red before annealing to strong double-peak blue PL bands after annealing is observed. Comparison of the structural, absorption and luminescence characteristics of the as-prepared and oxidized samples provides evidence for two competitive transition processes, the band-to-band recombination of the quantum confinement effect of nc-Si and the radiative recombination of excitons from the luminescent centres located at the surface of nc-Si units or in the Si oxide layers that cover the nc-Si units because of the different oxidation degrees. The sizes of nc-Si and the quality of the Si oxide surface are two major factors affecting two competitive processes. The smaller the size of nc-Si is and the stronger the oxidation degree of Si oxide layer is, the more beneficial for the luminescent centre recombination process to surpass the quantum confinement process is. The clarification on the origin of the photons may be important for the Si nanoporous pillar array to control both the PL band positions and the relative intensities according to future device requirements and further fabrication of optoelectronic nanodevices.展开更多
We have synthesized polycrystalline samples of Fe1.11(Te1-xSx) and single crystals of Fe1+y(Te0.88S0.12),and characterized their properties.Our results show that the solid solution of S in the Fe1.11Te tetragonal latt...We have synthesized polycrystalline samples of Fe1.11(Te1-xSx) and single crystals of Fe1+y(Te0.88S0.12),and characterized their properties.Our results show that the solid solution of S in the Fe1.11Te tetragonal lattice is limited,~10%.We observed superconductivity at ~8 K in both polycrystalline samples and single crystals.Magnetization measurements reveal that the volume fraction is small for this superconducting phase in both polycrystalline samples as-synthesized and single crystals as-grown.It is found that annealing in air enhances the superconducting fraction;the maximum fraction is almost 100% in the single crystals annealed in air at 300°C.We discuss the effect of annealing on superconductivity and transport properties at the normal state in the Fe1+y(Te1-xSx) system in terms of decrease of the excess Fe.展开更多
Undoped p-type Ga Sb single crystals were annealed at 550–600℃ for 100 h in ambient antimony. The annealed Ga Sb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy(GDMS), infra...Undoped p-type Ga Sb single crystals were annealed at 550–600℃ for 100 h in ambient antimony. The annealed Ga Sb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy(GDMS), infrared(IR)optical transmission and photoluminescence(PL) spectroscopy. Compared with the as-grown Ga Sb single crystal, the annealed Ga Sb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the Ga Sb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed.展开更多
The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0....The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0.93 eV(C-V) and 0.87 eV(I-V)/1.03 eV(C-V). However, the BH rises to 0.99 eV(I-V)/1.18 eV(C-V)and then slightly deceases to 0.92 eV(I-V)/1.03 eV(C-V) after annealing at 300 ℃ and 400 ℃. The utmost BH is attained after annealing at 300 ℃ and thus the optimum annealing for SBD is 300 ℃. By applying Cheung's functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung's and ΨS-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 ℃ annealing and then slightly increases after annealing at 400 ℃. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.展开更多
Thin films of Zn1-xCuxSe (x= 0.00, 0.05, 0.10, 0.15, 0.20) were grown on glass substrates by closed space sublimation technique. The deposited films were annealed at 200 ~C and 400 ~C in air for 1 h. The annealed sa...Thin films of Zn1-xCuxSe (x= 0.00, 0.05, 0.10, 0.15, 0.20) were grown on glass substrates by closed space sublimation technique. The deposited films were annealed at 200 ~C and 400 ~C in air for 1 h. The annealed samples have been investigated through Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), spectroscopic ellipsometer, spectrophotometer and Raman spectroscopy. Through RBS, the composition of the films was calculated and compared with the initial concentration. Structural characteriza- tion including crystal structure, crystal orientation, lattice parameter, grain size, strain and dislocation density were carried out using XRD data. From XRD spectra it was revealed that the as-deposited and annealed films were polycrystalline in nature with zinc-blende structure. However, the crystallinity and the grain size were improved with the increase of annealing temperature. According to Raman spectroscopy, it was observed that as deposited and annealed samples have the same characteristic vibrational modes of ZnSe at low and high frequency optical phonon modes while another mode was observed for 400 ℃ annealed samples at 745 cm-1. Spectroscopic ellipsometer has been used to found annealing effect on the optical properties of ZnSe. The band gap energy has been determined using transmission spectra. It was found that the band gap energy of the film increased with the increase of annealing temperature.展开更多
The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P...The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P),respectively. The thermodynamic calculation and theoretical analysis were used to determine the optimal heat treatment parameters. The Q & P samples exhibited relatively higher strength with relatively low ductility, mainly due to the hard martensite matrix, which resulted in continuous yielding behavior upon loading, whereas the IA samples showed the significantly improved ductility, which benefited from the more sufficient transformation-induced plasticity(TRIP) effects and the softer ultrafine ferrite matrix. The dependence of yield point elongation(YPE) of IA samples on grain size demonstrated that the YPE value was in the reverse proportional relationship to the average grain size, which agreed well with theoretical analysis.展开更多
The effects of the introduction of Ce to La(1-x)CexFe(11.5)Si(1.5) alloys on 1:13 phase formation mechanism,the first-order magnetic phase transition strengthening characteristics,and magnetocaloric property we...The effects of the introduction of Ce to La(1-x)CexFe(11.5)Si(1.5) alloys on 1:13 phase formation mechanism,the first-order magnetic phase transition strengthening characteristics,and magnetocaloric property were studied,respectively.The results show that the formation mechanisms of 1:13 and La Fe Si phases in La(1-x)CexFe(11.5)Si(1.5) alloys are the same as those of Ce2Fe(17) and CeFe2 phases in Ce–Fe binary system,respectively.The substitution of Ce in 1:13 phase which is limited can make the first-order magnetic phase transition characteristics strengthen,which can make thermal and magnetic hysteresis increase,the temperature interval of temperatureinduced phase transition decrease,and the critical magnetic field of field-induced magnetic phase transition(HC)increase,respectively.Owing to the lattice shrink of 1:13phase with the increase in Ce content,the Curie temperatures(TC) show a linear decrease.The maximum change in magnetic entropy gradually increases due to the decrease in temperature interval of temperature-induced phase transition,but the relative cooling capacities are all about80 Jákg-1at magnetic field of 2 T.展开更多
GaSb is the most suitable substrate in the epitaxial growth of mixed semiconductors of GaSb system.In this work,Te-doped GaSb bulk crystals with different doping concentration have been annealed at 550℃ for100 h in a...GaSb is the most suitable substrate in the epitaxial growth of mixed semiconductors of GaSb system.In this work,Te-doped GaSb bulk crystals with different doping concentration have been annealed at 550℃ for100 h in ambient antimony.The annealed samples have been studied by Hall effect measurement,infrared(IR)optical transmission,Glow discharge mass spectroscopy(GDMS) and photoluminescence(PL) spectroscopy.After annealing,Te-doped GaSb samples exhibit a decrease of carrier concentration and increase of mobility,along with an improvement of below gap IR transmission.Native acceptor related electrical compensation analysis suggests a formation of donor defect with deeper energy level.The mechanism of the variation of the defect and its influence on the material properties are discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 70234040, 60476040 and 60576068)the Shanghai Science and Technology Foundation, China (Grant No 05DJ14003)
文摘ZnO nanopowder is successfully synthesized by annealing the precursors in oxygen gas using the chemical precipitation method. Structural and optical properties of thus synthesized ZnO nanopowder are characterized by scanning electron microscopy (SEM) and photoluminescence (PL). The morphology of ZnO nanopowders evolves from nanorod to cobble as annealing temperature increases from 500 to 1000℃, while spiral structures are observed in the samples annealed at 900 and 1000℃. The PL spectra of ZnO nanopowder consist of largely green and yellow emission bands. The green emission from ZnO nanopowder depends strongly on the annealing temperature with a peak intensity at a temperature lower than 800℃ while the yellow emission is associated with interstitial oxygen Oi.
基金the funding provided by the Postgraduate Research Grant Scheme (PRGS) (Grant No. 1001/PFIZIK/845006) of the Universiti Sains Malaysia
文摘Undoped ZnO nanostructures were deposited on SiO2/Si substrates via radio 11:equency magnetron sputtenng at different deposition temperatures (room temperature, 200, 300, and 400 ℃). The prepared samples were annealed at 500 ℃ for 2 h under an N2 flow. The structural, surface morphological, optical, and photoresponse characteristics of ZnO nanostructures as deposited and after annealing were then investigated. The energy bandgaps of all samples after annealing (3.22-3.28 eV) decreased compared with those of the as-deposited specimens. The barrier height increased when the deposition temperature increased and reached 0.77 eV at 400 ℃ after annealing with a leakage current of 0.17 gA at a 5 V bias. The UV photodetector device which was deposited at the optimal temperature of 300 ℃, has 12.51 × 10^3% pho- tosensitivity, 2.259 pA dark current, 0.508 s response time, and 0.466 s recovery time. The dark current significantly decreased for all samples after annealing. The proposed UV photodetectors exhibit high performance, high photosensi- tivity, shorter response and recovery times, and excellent stability at lower bias voltages of 5 and 2 V.
基金financially supported by the National Natural Science Foundation of China(Nos.60876046 and 60976048)the Tianjin Natural Science Foundation(Nos.13JCYBJC18900,13JCZDJC26700 and 12JCQNJC01300)+1 种基金the Scientific Developing Foundation of Tianjin Education Commission(No.20100723)the Tianjin Key Discipline of Material Physicsand Chemistry
文摘ZnO nanoparticles films were prepared via sol-gel process and incorporated into inverted organic photovoltaic devices with a structure of ITO/ZnO/P3HT:PCBM/MoO3/Ag, in which ZnO film served as an electron selective layer. The effects of annealing temperature of ZnO film on the device performance were investigated. When the annealing temperature was 300℃, a well-arranged ZnO thin film was obtained, and the optimized device had doubled short circuit current density (Jsc) and seven-fold higher power conversion efficiency (PCE) compared to the devices without ZnO film. This improvement could be attributed to the enlarged interfacial area of ZnO/active layer and better energy band matching which causes an efficient electron extraction and a decreased interface energy barrier. At particularly high annealing temperature, dramatically increased sheet resistance of indium tin oxide (ITO) was found to cause PCE deterioration. Our finding indicates that it is highly important to investigate both morphology and electrical effects for understanding and optimizing organic photovoltaic (OPV) performance.
文摘The effect of annealing temperature on the formation of the PtSi phase. distribution of silicides and the surface morphologies of silicides films is investigated by XPS. AFM. It is shown that the phase sequences of the films change from Pt-Pt2Si-PtSi-Si to Pt+Pt2Si+PtSi-PtSi-Si or Pt+Pt2Si+PtSi-PtSi-st with an increase of annealing temperature and the reason for the formation of mixed layers is discussed.
文摘Transparent conductive cadmium indium oxide films (CdIn2O4) were prepared by r.f. reactive sputtering from Cd-In alloy targets under an Ar-O2 atmosphere. Electrical conductivity of the order of 105Ω-1.m-1 and the optical transmission as high as 94% are easily attained by postdeposition annealing treatment. The effects of oxygen concentration in the reactive gas mixture and post-deposition annealing treatment on the optical transmittance as well as optical parameters, such as refractive index (n), extinction coefficient (k), real part (ε') and imaginary part (ε') of the dielectric constant, were studied in the visible and near-infrared region. The highfrequency dielectric constant ε∞ the plasma frequency ωP, and the conduction band effective mass mc of different samples were also investigated
文摘The magnetic aftereffect (MAE) and the positron lifetime were measured at room temperature on the Fe_73.5Cu_1 Nb_3Si_13.5 B_9 alloy in as-cast and after annealing at temperature T_a in the range from 450 to 750℃ It was found that both the MAE and the positron lifetime decrease with increasing T_a when T_≤600℃. While Ta≥650℃, MAE is essentially suppressed, and two positron lifetimes appear.
文摘We investigated the variation of permeability spectra and relaxation frequency in Co-based amorphous ribbon annealed by pulsed Nd:YAG laser at various annealing energy Ea. The complex permeability spectra varies sensitively with the annealing energy, where the spectra could be decomposed into two contributions from domain wall motion,μdw(f) and rotational magnetization μrot(f) by analyzing the measured spectra as a function of driving ac field amplitude. The magnitude of μdw(f) and μrot(f) in dc limit shows maximum at Ea = 176 mJ. The maximum relaxation frequency for rotational magnetization, determined by μ'(f) curve, is about 700 kHz at Ea=62 mJ but that for wall motion is about 26 kHz at 230 mJ. These variations reflect the increase of magnetic softness and microstructural change by the annealing.
文摘Chemically synthesized ZnS thin film is found to be a good x-ray radiation sensor. We report the effect of annealing on the x-ray radiation detection sensitivity of a ZnS thin film synthesized by a chemical bath deposition technique. The chemically synthesized ZnS films are annealed at 333, 363 and 393K for 1 h. Structural analyses show that the lattice defects in the films decrease with annealing. Further, the band gap is also found to decrease from 3.38 to 3.21 eV after annealing at 393K. Current-voltage characteristics of the films are studied under dark and x-ray irradiation conditions. Due to the decrease of lattice defects and band gap, the conductivity under dark conditions is found to increase from 2.06 × 10^-6 to 1.69 × 10^-5 S/em, while that under x-ray irradiation increases from 4.13 × 10^-5 to 5.28 ×10^-5 S/cm. On the other hand, the x-ray radiation detection sensitivity of the films is found to decrease with annealing. This decrease of detection sensitivity is attributed to the decrease of the band gap as well as some structural and surface morphological changes occurring after annealing.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51272022 and 11474018the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20120009130005the Fundamental Research Funds for the Central Universities under Grant No 2012JBZ001
文摘Effects of thermal annealing on the optical, electrical and structural properties of 3 vol% 1,8-diiodoctane added P3HT:PC61BM active layers are investigated, concerning the performance of the bulk heterojunction polymer so- lar cells by changing the heat temperature. The structure information of the active layer is analyzed by using the grazing incidence wide angle scattering diffraction combined with the optical microscope, light absorption, pho- toluminescence and the external quantum efficiency spectra. The relationship between the detail of morphology and the optical, electrical properties is investigated.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CB301900,2012CB619200 and 2012CB619304the High-Technology Research and Development Program of China under Grant Nos 2014AA032605 and 2015AA033305+4 种基金the National Natural Science Foundation of China under Grant Nos 60990311,61274003,61422401,51461135002,60936004,61176063 and 61334009the Natural Science Foundation of Jiangsu Province under Grant Nos BK2011010 and BK20141320the Scientific Innovation Research of College Graduate in Jiangsu Province under Grant No CXLX12.0049a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Solid State Lighting and Energy-saving Electronics Collaborative Innovation Center
文摘The effect of high-temperature annealing on the yellow and blue luminescence of the undoped GaN is investi- gated by photoluminescenee (PL) and x-ray photoelectron spectroscopy (XPS). It is found that the band-edge emission in the GaN apparently increases, and the yellow luminescence (YL) and blue luminescence (BL) bands dramatically decrease after annealing at 700℃. At the annealing temperature higher than 900℃, the YL and BL intensities show an enhancement for the nitrogen annealed GaN. This fact should be attributed to the increment of the Ga and N vacancies in the GaN decomposition. However, the integrated PL intensity of the oxygen an- nealed GaN decreases at the temperature ranging from 900℃ to 1000℃. This results from the capture of many photo-generated holes by high-density surface states. XPS characterization confirms that the high-density surface states mainly originate from the incorporation of oxygen atoms into GaN at the high annealing temperature, and even induces the 0.34eV increment of the upward band bending for the oxygen annealed GaN at 1000℃.
文摘Development of graphene field effect transistors (GFETs) faces a serious challenge of graphene interface to the dielectric material. A single layer of intrinsic graphene has an average sheet resistance of the order of 1-5 kΩ/□. The intrinsic nature of graphene leads to higher contact resistance yielding into the outstanding properties of the material. We design a graphene matrix with minimized sheet resistance of 0.185 kΩ/□ with Ag contacts. The developed matrices on silicon substrates provide a variety of transistor design options for subsequent fabrication. The graphene layer is developed over 400 nm nickel in such a way as to analyze hypersensitive electrical properties of the interface for exfoliation. This work identifies potential of the design in the applicability of few-layer GFETs with less process steps with the help of analyzing the effect of metal contact and post-process anneMing on its electrical fabrication.
基金supported by the National Natural Science Foundation of China(Grant No 60606022)the Xian Applied Materials Foundation of China(Grant No XA-AM-200702)the Advanced Research Foundation of China(Grant No 9140A08050508)
文摘This paper reports that Ni and Ti/4H-SiC Schottky barrier diodes (SBDs) were fabricated and irradiated with 1 MeV electrons up to a dose of 3.43 × 10^14 e/cm2. After radiation, the Schottky barrier height φB of the Ni/4H-SiC SBD increased from 1.20 eV to 1.21 eV, but decreased from 0.95 eV to 0.94 eV for the Ti/4H-SiC SBD. The degradation of φB could be explained by interface states of changed Schottky contacts. The on-state resistance Rs of both diodes increased with the dose, which can be ascribed to the radiation defects. The reverse current of the Ni/4H-SiC SBD slightly increased, but for the Ti/4H-SiC SBD it basically remained the same. At room temperature, φB of the diodes recovered completely after one week, and the RS partly recovered.
基金supported by the Doctoral Fund of the Ministry of Education of China (Grant No. 20090010120014)the Beijing Natural Science Foundation (Grant No. 1103033)the Fundamental Research Funds for the Central Universities
文摘Silicon dominates the electronic industry, but its poor optical properties mean that it is not preferred for photonic applications. Visible photoluminescence (PL) was observed from porous Si at room temperature in 1990, but the origin of these light emissions is still not fully understood. This paper reports that an Si nanocrystal, silicon nanoporous pillar array (Si-NPA) with strong visible PL has been prepared on a Si wafer substrate by the hydrothermal etching method. After annealing in 02 atmosphere, the hydride coverage of the Si pillar internal surface is replaced by an oxide layer, which comprises of a great quantity of Si nanocrystal (nc-Si) particles and each of them axe encapsulated by an Si oxide layer. Meanwhile a transition from efficient triple-peak PL bands from blue to red before annealing to strong double-peak blue PL bands after annealing is observed. Comparison of the structural, absorption and luminescence characteristics of the as-prepared and oxidized samples provides evidence for two competitive transition processes, the band-to-band recombination of the quantum confinement effect of nc-Si and the radiative recombination of excitons from the luminescent centres located at the surface of nc-Si units or in the Si oxide layers that cover the nc-Si units because of the different oxidation degrees. The sizes of nc-Si and the quality of the Si oxide surface are two major factors affecting two competitive processes. The smaller the size of nc-Si is and the stronger the oxidation degree of Si oxide layer is, the more beneficial for the luminescent centre recombination process to surpass the quantum confinement process is. The clarification on the origin of the photons may be important for the Si nanoporous pillar array to control both the PL band positions and the relative intensities according to future device requirements and further fabrication of optoelectronic nanodevices.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10974175 and 10934005)the National Basic Research Program of China (Grant No. 2009CB929104)the PCSIRT of the Ministry of Education of China (Grant No. IRT0754)
文摘We have synthesized polycrystalline samples of Fe1.11(Te1-xSx) and single crystals of Fe1+y(Te0.88S0.12),and characterized their properties.Our results show that the solid solution of S in the Fe1.11Te tetragonal lattice is limited,~10%.We observed superconductivity at ~8 K in both polycrystalline samples and single crystals.Magnetization measurements reveal that the volume fraction is small for this superconducting phase in both polycrystalline samples as-synthesized and single crystals as-grown.It is found that annealing in air enhances the superconducting fraction;the maximum fraction is almost 100% in the single crystals annealed in air at 300°C.We discuss the effect of annealing on superconductivity and transport properties at the normal state in the Fe1+y(Te1-xSx) system in terms of decrease of the excess Fe.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61474104 and 61504131)
文摘Undoped p-type Ga Sb single crystals were annealed at 550–600℃ for 100 h in ambient antimony. The annealed Ga Sb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy(GDMS), infrared(IR)optical transmission and photoluminescence(PL) spectroscopy. Compared with the as-grown Ga Sb single crystal, the annealed Ga Sb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the Ga Sb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed.
文摘The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0.93 eV(C-V) and 0.87 eV(I-V)/1.03 eV(C-V). However, the BH rises to 0.99 eV(I-V)/1.18 eV(C-V)and then slightly deceases to 0.92 eV(I-V)/1.03 eV(C-V) after annealing at 300 ℃ and 400 ℃. The utmost BH is attained after annealing at 300 ℃ and thus the optimum annealing for SBD is 300 ℃. By applying Cheung's functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung's and ΨS-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 ℃ annealing and then slightly increases after annealing at 400 ℃. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.
文摘Thin films of Zn1-xCuxSe (x= 0.00, 0.05, 0.10, 0.15, 0.20) were grown on glass substrates by closed space sublimation technique. The deposited films were annealed at 200 ~C and 400 ~C in air for 1 h. The annealed samples have been investigated through Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), spectroscopic ellipsometer, spectrophotometer and Raman spectroscopy. Through RBS, the composition of the films was calculated and compared with the initial concentration. Structural characteriza- tion including crystal structure, crystal orientation, lattice parameter, grain size, strain and dislocation density were carried out using XRD data. From XRD spectra it was revealed that the as-deposited and annealed films were polycrystalline in nature with zinc-blende structure. However, the crystallinity and the grain size were improved with the increase of annealing temperature. According to Raman spectroscopy, it was observed that as deposited and annealed samples have the same characteristic vibrational modes of ZnSe at low and high frequency optical phonon modes while another mode was observed for 400 ℃ annealed samples at 745 cm-1. Spectroscopic ellipsometer has been used to found annealing effect on the optical properties of ZnSe. The band gap energy has been determined using transmission spectra. It was found that the band gap energy of the film increased with the increase of annealing temperature.
基金financially supported by the National Natural Science Foundation of China(No.51401050)the Fundamental Research Funding for the Central Universities(No.N160204001)supported by the Australian Research Council(ARC)Laureate Fellowship(Prof.Hodgson)
文摘The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P),respectively. The thermodynamic calculation and theoretical analysis were used to determine the optimal heat treatment parameters. The Q & P samples exhibited relatively higher strength with relatively low ductility, mainly due to the hard martensite matrix, which resulted in continuous yielding behavior upon loading, whereas the IA samples showed the significantly improved ductility, which benefited from the more sufficient transformation-induced plasticity(TRIP) effects and the softer ultrafine ferrite matrix. The dependence of yield point elongation(YPE) of IA samples on grain size demonstrated that the YPE value was in the reverse proportional relationship to the average grain size, which agreed well with theoretical analysis.
基金financially supported by the National Natural Science Foundation of China(No.51176050)the Research Projects in Sichuan Province Education Office(No.12ZB073)
文摘The effects of the introduction of Ce to La(1-x)CexFe(11.5)Si(1.5) alloys on 1:13 phase formation mechanism,the first-order magnetic phase transition strengthening characteristics,and magnetocaloric property were studied,respectively.The results show that the formation mechanisms of 1:13 and La Fe Si phases in La(1-x)CexFe(11.5)Si(1.5) alloys are the same as those of Ce2Fe(17) and CeFe2 phases in Ce–Fe binary system,respectively.The substitution of Ce in 1:13 phase which is limited can make the first-order magnetic phase transition characteristics strengthen,which can make thermal and magnetic hysteresis increase,the temperature interval of temperatureinduced phase transition decrease,and the critical magnetic field of field-induced magnetic phase transition(HC)increase,respectively.Owing to the lattice shrink of 1:13phase with the increase in Ce content,the Curie temperatures(TC) show a linear decrease.The maximum change in magnetic entropy gradually increases due to the decrease in temperature interval of temperature-induced phase transition,but the relative cooling capacities are all about80 Jákg-1at magnetic field of 2 T.
基金Project supported by the National Natural Science Foundation of China(Nos.61474104,61504131)
文摘GaSb is the most suitable substrate in the epitaxial growth of mixed semiconductors of GaSb system.In this work,Te-doped GaSb bulk crystals with different doping concentration have been annealed at 550℃ for100 h in ambient antimony.The annealed samples have been studied by Hall effect measurement,infrared(IR)optical transmission,Glow discharge mass spectroscopy(GDMS) and photoluminescence(PL) spectroscopy.After annealing,Te-doped GaSb samples exhibit a decrease of carrier concentration and increase of mobility,along with an improvement of below gap IR transmission.Native acceptor related electrical compensation analysis suggests a formation of donor defect with deeper energy level.The mechanism of the variation of the defect and its influence on the material properties are discussed.