This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,shoul...This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness.展开更多
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node...Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).展开更多
Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation pe...Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation performance of MCT.To solve the practical resource scheduling problem(RSP)in MCT efficiently,this paper has contributions to both the problem model and the algorithm design.Firstly,in the problem model,different from most of the existing studies that only consider scheduling part of the resources in MCT,we propose a unified mathematical model for formulating an integrated RSP.The new integrated RSP model allocates and schedules multiple MCT resources simultaneously by taking the total cost minimization as the objective.Secondly,in the algorithm design,a pre-selection-based ant colony system(PACS)approach is proposed based on graphic structure solution representation and a pre-selection strategy.On the one hand,as the RSP can be formulated as the shortest path problem on the directed complete graph,the graphic structure is proposed to represent the solution encoding to consider multiple constraints and multiple factors of the RSP,which effectively avoids the generation of infeasible solutions.On the other hand,the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-quality solution.To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,a set of test cases with different sizes is conducted.Experimental results and comparisons show the effectiveness and efficiency of the PACS algorithm,which can significantly outperform other state-of-the-art algorithms.展开更多
With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, le...With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.展开更多
Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion...Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being.展开更多
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ...Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.展开更多
In order to effectively conduct emotion recognition from spontaneous, non-prototypical and unsegmented speech so as to create a more natural human-machine interaction; a novel speech emotion recognition algorithm base...In order to effectively conduct emotion recognition from spontaneous, non-prototypical and unsegmented speech so as to create a more natural human-machine interaction; a novel speech emotion recognition algorithm based on the combination of the emotional data field (EDF) and the ant colony search (ACS) strategy, called the EDF-ACS algorithm, is proposed. More specifically, the inter- relationship among the turn-based acoustic feature vectors of different labels are established by using the potential function in the EDF. To perform the spontaneous speech emotion recognition, the artificial colony is used to mimic the turn- based acoustic feature vectors. Then, the canonical ACS strategy is used to investigate the movement direction of each artificial ant in the EDF, which is regarded as the emotional label of the corresponding turn-based acoustic feature vector. The proposed EDF-ACS algorithm is evaluated on the continueous audio)'visual emotion challenge (AVEC) 2012 dataset, which contains the spontaneous, non-prototypical and unsegmented speech emotion data. The experimental results show that the proposed EDF-ACS algorithm outperforms the existing state-of-the-art algorithm in turn-based speech emotion recognition.展开更多
Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning usi...Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.展开更多
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored...[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.展开更多
To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of conver...To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of convergence,the traveling salesman problem(TSP)data is specially clustered by the C-means algorithm,then,the result is processed by the ant colony algorithm to solve the problem.The proposed algorithm treats the C-means algorithm as a new search operator and adopts a kind of local searching strategy—2-opt,so as to improve the searching performance.Given the cluster number,the algorithm can obtain the preferable solving result.Compared with the three other algorithms—the ant colony algorithm,the genetic algorithm and the simulated annealing algorithm,the proposed algorithm can make the results converge to the global optimum faster and it has higher accuracy.The algorithm can also be extended to solve other correlative clustering combination optimization problems.Experimental results indicate the validity of the proposed algorithm.展开更多
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo...Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.展开更多
The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method...The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method for the path planning. In the paper the traditional ant colony algorithm is improved, and measures of keeping optimization, adaptively selecting and adaptively adjusting are applied, by which better path at higher convergence speed can be found. Finally the algorithm is implemented with computer simulation and preferable results are obtained.展开更多
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we...A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.展开更多
This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorith...This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.展开更多
Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic mode...Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach.展开更多
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s...An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully.展开更多
To solve the resource-constrained project scheduling problem (RCPSP), a hybrid ant colony optimization (HACO) approach is presented. To improve the quality of the schedules, the HACO is incorporated with an extend...To solve the resource-constrained project scheduling problem (RCPSP), a hybrid ant colony optimization (HACO) approach is presented. To improve the quality of the schedules, the HACO is incorporated with an extended double justification in which the activity splitting is applied to predict whether the schedule could be improved. The HACO is tested on the set of large benchmark problems from the project scheduling problem library (PSPLIB). The computational result shows that the proposed algo- rithm can improve the quality of the schedules efficiently.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard m...A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard mechanism is introduced into the system for making pheromone and completing the algorithm. Every node, which can be looked as an ant, makes one information zone in its memory for communicating with other nodes and leaves pheromone, which is created by ant itself in naalre. Then ant colony theory is used to find the optimization scheme for path planning and deployment of mobile Wireless Sensor Network (WSN). We test the algorithm in a dynamic and unconfigurable environment. The results indicate that the algorithm can reduce the power consumption by 13% averagely, enhance the efficiency of path planning and deployment of mobile WSN by 15% averagely.展开更多
Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is pr...Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.展开更多
文摘This advanced paper presents a new approach to improving image steganography using the Ant Colony Optimization(ACO)algorithm.Image steganography,a technique of embedding hidden information in digital photographs,should ideally achieve the dual purposes of maximum data hiding and maintenance of the integrity of the cover media so that it is least suspect.The contemporary methods of steganography are at best a compromise between these two.In this paper,we present our approach,entitled Ant Colony Optimization(ACO)-Least Significant Bit(LSB),which attempts to optimize the capacity in steganographic embedding.The approach makes use of a grayscale cover image to hide the confidential data with an additional bit pair per byte,both for integrity verification and the file checksumof the secret data.This approach encodes confidential information into four pairs of bits and embeds it within uncompressed grayscale images.The ACO algorithm uses adaptive exploration to select some pixels,maximizing the capacity of data embedding whileminimizing the degradation of visual quality.Pheromone evaporation is introduced through iterations to avoid stagnation in solution refinement.The levels of pheromone are modified to reinforce successful pixel choices.Experimental results obtained through the ACO-LSB method reveal that it clearly improves image steganography capabilities by providing an increase of up to 30%in the embedding capacity compared with traditional approaches;the average Peak Signal to Noise Ratio(PSNR)is 40.5 dB with a Structural Index Similarity(SSIM)of 0.98.The approach also demonstrates very high resistance to detection,cutting down the rate by 20%.Implemented in MATLAB R2023a,the model was tested against one thousand publicly available grayscale images,thus providing robust evidence of its effectiveness.
文摘Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).
基金This research was supported in part by the National Key Research and Development Program of China under Grant 2022YFB3305303in part by the National Natural Science Foundations of China(NSFC)under Grant 62106055+1 种基金in part by the Guangdong Natural Science Foundation under Grant 2022A1515011825in part by the Guangzhou Science and Technology Planning Project under Grants 2023A04J0388 and 2023A03J0662.
文摘Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation performance of MCT.To solve the practical resource scheduling problem(RSP)in MCT efficiently,this paper has contributions to both the problem model and the algorithm design.Firstly,in the problem model,different from most of the existing studies that only consider scheduling part of the resources in MCT,we propose a unified mathematical model for formulating an integrated RSP.The new integrated RSP model allocates and schedules multiple MCT resources simultaneously by taking the total cost minimization as the objective.Secondly,in the algorithm design,a pre-selection-based ant colony system(PACS)approach is proposed based on graphic structure solution representation and a pre-selection strategy.On the one hand,as the RSP can be formulated as the shortest path problem on the directed complete graph,the graphic structure is proposed to represent the solution encoding to consider multiple constraints and multiple factors of the RSP,which effectively avoids the generation of infeasible solutions.On the other hand,the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-quality solution.To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,a set of test cases with different sizes is conducted.Experimental results and comparisons show the effectiveness and efficiency of the PACS algorithm,which can significantly outperform other state-of-the-art algorithms.
文摘With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.
文摘Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being.
基金The National Natural Science Foundation of China(No.61074147)the Natural Science Foundation of Guangdong Province(No.S2011010005059)+2 种基金the Foundation of Enterprise-University-Research Institute Cooperation from Guangdong Province and Ministry of Education of China(No.2012B091000171,2011B090400460)the Science and Technology Program of Guangdong Province(No.2012B050600028)the Science and Technology Program of Huadu District,Guangzhou(No.HD14ZD001)
文摘Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful.
基金The National Natural Science Foundation of China(No.61231002,61273266,61571106)the Foundation of the Department of Science and Technology of Guizhou Province(No.[2015]7637)
文摘In order to effectively conduct emotion recognition from spontaneous, non-prototypical and unsegmented speech so as to create a more natural human-machine interaction; a novel speech emotion recognition algorithm based on the combination of the emotional data field (EDF) and the ant colony search (ACS) strategy, called the EDF-ACS algorithm, is proposed. More specifically, the inter- relationship among the turn-based acoustic feature vectors of different labels are established by using the potential function in the EDF. To perform the spontaneous speech emotion recognition, the artificial colony is used to mimic the turn- based acoustic feature vectors. Then, the canonical ACS strategy is used to investigate the movement direction of each artificial ant in the EDF, which is regarded as the emotional label of the corresponding turn-based acoustic feature vector. The proposed EDF-ACS algorithm is evaluated on the continueous audio)'visual emotion challenge (AVEC) 2012 dataset, which contains the spontaneous, non-prototypical and unsegmented speech emotion data. The experimental results show that the proposed EDF-ACS algorithm outperforms the existing state-of-the-art algorithm in turn-based speech emotion recognition.
基金Supported by State Key Laboratory of Robotics and System (HIT) under Grant No.SKLRS200706the Heilongjiang Scientific Research Foundation for Postdoctoral Financial Assistance under Grant No.323630221the Project of Harbin Technological Talent Research Foundation under Grant No.RC2006QN009015
文摘Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.
基金Supported by the National Natural Science Foundation of China(31101085)the Program for Young Core Teachers of Colleges in Henan(2011GGJS-094)the Scientific Research Project for the High Level Talents,North China University of Water Conservancy and Hydroelectric Power~~
文摘[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of convergence,the traveling salesman problem(TSP)data is specially clustered by the C-means algorithm,then,the result is processed by the ant colony algorithm to solve the problem.The proposed algorithm treats the C-means algorithm as a new search operator and adopts a kind of local searching strategy—2-opt,so as to improve the searching performance.Given the cluster number,the algorithm can obtain the preferable solving result.Compared with the three other algorithms—the ant colony algorithm,the genetic algorithm and the simulated annealing algorithm,the proposed algorithm can make the results converge to the global optimum faster and it has higher accuracy.The algorithm can also be extended to solve other correlative clustering combination optimization problems.Experimental results indicate the validity of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(60573159)
文摘Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness.
文摘The ant colony algorithm is a new class of population basic algorithm. The path planning is realized by the use of ant colony algorithm when the plane executes the low altitude penetration, which provides a new method for the path planning. In the paper the traditional ant colony algorithm is improved, and measures of keeping optimization, adaptively selecting and adaptively adjusting are applied, by which better path at higher convergence speed can be found. Finally the algorithm is implemented with computer simulation and preferable results are obtained.
文摘A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example.
文摘This paper presents an application of an Ant Colony Optimization (ACO) algorithm to optimize the parameters in the design of a type of nonlinear PID controller. The ACO algorithm is a novel heuristic bionic algorithm, which is based on the behaviour of real ants in nature searching for food. In order to optimize the parameters of the nonlinear PID controller using ACO algorithm, an objective function based on position tracing error was constructed, and elitist strategy was adopted in the improved ACO algorithm. Detailed simulation steps are presented. This nonlinear PID controller using the ACO algorithm has high precision of control and quick response.
基金supported by the Natural Science Foundation of China (Grant no.60604009)Aeronautical Science Foundation of China (Grant no.2006ZC51039,Beijing NOVA Program Foundation of China (Grant no.2007A017)+1 种基金Open Fund of the Provincial Key Laboratory for Information Processing Technology,Suzhou University (Grant no KJS0821)"New Scientific Star in Blue Sky"Talent Program of Beihang University of China
文摘Multiple Uninhabited Aerial Vehicles (multi-UAVs) coordinated trajectory replanning is one of the most complicated global optimum problems in multi-UAVs coordinated control. Based on the construction of the basic model of multi-UAVs coordinated trajectory replanning, which includes problem description, threat modeling, constraint conditions, coordinated function and coordination mechanism, a novel Max-Min adaptive Ant Colony Optimization (ACO) approach is presented in detail. In view of the characteristics of multi-UAVs coordinated trajectory replanning in dynamic and uncertain environments, the minimum and maximum pheromone trails in ACO are set to enhance the searching capability, and the point pheromone is adopted to achieve the collision avoidance between UAVs at the trajectory planner layer. Considering the simultaneous arrival and the air-space collision avoidance, an Estimated Time of Arrival (ETA) is decided first. Then the trajectory and flight velocity of each UAV are determined. Simulation experiments are performed under the complicated combating environment containing some static threats and popup threats. The results demonstrate the feasibility and the effectiveness of the proposed approach.
文摘An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully.
基金supported by Liaoning BaiQianWan Talents Program(20071866-25)
文摘To solve the resource-constrained project scheduling problem (RCPSP), a hybrid ant colony optimization (HACO) approach is presented. To improve the quality of the schedules, the HACO is incorporated with an extended double justification in which the activity splitting is applied to predict whether the schedule could be improved. The HACO is tested on the set of large benchmark problems from the project scheduling problem library (PSPLIB). The computational result shows that the proposed algo- rithm can improve the quality of the schedules efficiently.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
基金National "863" Project of China (Grant no. 2007AA04Z224)
文摘A novel bionic swarm intelligence algorithm, called ant colony algorithm based on a blackboard mechanism, is proposed to solve the autonomy and dynamic deployment of mobiles sensor networks effectively. A blackboard mechanism is introduced into the system for making pheromone and completing the algorithm. Every node, which can be looked as an ant, makes one information zone in its memory for communicating with other nodes and leaves pheromone, which is created by ant itself in naalre. Then ant colony theory is used to find the optimization scheme for path planning and deployment of mobile Wireless Sensor Network (WSN). We test the algorithm in a dynamic and unconfigurable environment. The results indicate that the algorithm can reduce the power consumption by 13% averagely, enhance the efficiency of path planning and deployment of mobile WSN by 15% averagely.
文摘Ant colony algorithms comprise a novel category of evolutionary computation methods for optimization problems, especially for sequencing-type combinatorial optimization problems. An adaptive ant colony algorithm is proposed in this paper to tackle continuous-space optimization problems, using a new objective-function-based heuristic pheromone assignment approach for pheromone update to filtrate solution candidates.Global optimal solutions can be reached more rapidly by self-adjusting the path searching behaviors of the ants according to objective values. The performance of the proposed algorithm is compared with a basic ant colony algorithm and a Square Quadratic Programming approach in solving two benchmark problems with multiple extremes. The results indicated that the efficiency and reliability of the proposed algorithm were greatly improved.