Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-...Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.展开更多
Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target...Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target parameters and target direction estimation is difficult in radar MLJ.A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper.The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle.Precisely,the eigen-projection matrix processing(EMP)algorithm is adopted to suppress the MLJ,and the target range is estimated effectively through the beamforming and pulse compression.Then the target angle can be effectively estimated by the atom-reconstruction method.Without any prior knowledge,the MLJ can be canceled,and the angle estimation accuracy is well preserved.Furthermore,the proposed method does not have strict requirement for radar array construction,and it can be applied for linear array and planar array.Moreover,the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth(or elevation)equals to the jamming azimuth(or elevation),because the MLJ is suppressed in spatial plane dimension.展开更多
This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection...This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.展开更多
Based on the anti-jamming performance of differential frequency hopping (DFH) systems in Additive White Gaussian Noise (AWGN) channel, Fountain code is introduced to the DFH systems as the outer error correcting c...Based on the anti-jamming performance of differential frequency hopping (DFH) systems in Additive White Gaussian Noise (AWGN) channel, Fountain code is introduced to the DFH systems as the outer error correcting code in this paper to investigate the improvements against partial-band jamming over AWGN channel. The performance of Fountain coded DFH is theoretically analyzed and numerically simulated. The total frequency of hopping in the simulation is 16, and results show that, on one hand, when exact jamming state information (JSI) is available, and the number of jamming frequency is n= 16, the bit error rate (BER) of 10~3 is achieved with the signal to interference ratio (SIR) approximately 7.5 dB over AWGN channel, and the performance improves about 1-1.5dB compared with the no-coded system. When the number of jamming frequency is n=2, the performance increases 15-17dB. On the other hand, when JSI is unavailable, a joint JSI estimation and decoding algorithm is proposed. The BER of 10 3 is achieved with jamming-frequency n 16, SIR=8dB and signal noise ratio (SNR) 10dB over AWGN channel. It's proved that this algorithm provides robust anti-jamming pertbrmance even without JSI. The anti-jamming performance of Fountain coded DFH systems is obviously superior to no-coded DFH systems.展开更多
This paper deals with the follower jamming(FJ)resistance for the frequency hopping(FH)communication system over additive white Gaussian noise(AWGN)channel.Conventional FH systems are susceptible to be jammed by FJ,and...This paper deals with the follower jamming(FJ)resistance for the frequency hopping(FH)communication system over additive white Gaussian noise(AWGN)channel.Conventional FH systems are susceptible to be jammed by FJ,and multi-pattern frequency hopping(MPFH)has good resistance to FJ.To further improve the FJ rejection capability of MPFH,we propose a wide gap multi-pattern frequency hopping(WGMPFH)scheme.WGMPFH uses channels to represent messages,and the data channel and complementary channel are hopping on orthogonal frequency slots according to wide gap FH patterns.The transmitted signal lures FJ to aim at the data channel and the complementary channel is away from FJ by adopting wide gap frequency patterns.FJ does not affect the complementary channel but increases the signal energy in the data channel,thus the effect of FJ is reduced.Its bit error rate(BER)is derived under FJ and the effects of three FJ parameters(tracking success probability,jamming duration ratio and jamming bandwidth ratio)on the BER performance of WGMPFH are investigated versus the co nventional FH/BFSK and MPFH system.Numerical and simulation results show that when under the worst-case FJ,the proposed WGMPFH outperforms the MPFH by about 1-3 dB and outperforms the conventional FH/BFSK by more than 4 dB.The proposed WGMPFH shows superior jamming rejection performance under FJ especially in severe signal-to-jamming ratio(SJR).展开更多
Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitud...Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.展开更多
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t...Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.展开更多
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p...In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.展开更多
This paper investigates the anti-jamming trajectory design to safeguard the effective data collection, where a unmanned aerial vehicle(UAV)is dispatched to collect data over multiple sensor nodes(SNs) in jamming envir...This paper investigates the anti-jamming trajectory design to safeguard the effective data collection, where a unmanned aerial vehicle(UAV)is dispatched to collect data over multiple sensor nodes(SNs) in jamming environment. Under the limited power and transmission range of SNs, we aim to minimize the UAV’s flight energy consumption in a finite task period, by jointly optimizing SNs collection sequence and UAV flight trajectory. Firstly, we propose a general optimization framework which consists of path planning and trajectory optimization for the formulated non-convex problem. In the path planning phase, a dynamic programming(DP) algorithm is used to provide the initial path of the UAV, which is the shortest path to visit each SN. In the trajectory optimization phase, we introduce the concept of Communication Flight Corridor(CFC) to meet the non-convex constraints and apply a piecewise Bézier curve, based on Bernoulli polynomial, to represent the flight trajectory of the UAV, which can transform the optimization variables from infinite time variables to polynomial coefficients of finite order. Finally, we simulate the flight trajectory of UAV in hovering mode and continuous flight mode under different parameters, and the simulation results demonstrate the effectiveness of the proposed method.展开更多
A communication and navigation receiver is required to remove hostile jamming signals and synchronize receiving signals effectively especially for satellite communication and navigation whose resources are becoming mo...A communication and navigation receiver is required to remove hostile jamming signals and synchronize receiving signals effectively especially for satellite communication and navigation whose resources are becoming more and more limited. This paper proposes a novel signal receiving method by combining the pro- cesses of anti-jamming and synchronization to reduce the overall computationa~ complexity at the expense of slightly affecting the detection probability, which is analyzed in detail by derivations. Furthermore, this paper introduces sparse Fourier transformation (SFT) into the proposed algorithm to replace fast Fourier transfor- mation (FFT) so as to further reduce the calculation time especially in large frequency offset environments.展开更多
In this paper, we conduct a cross-layer analysis of both the jamming capability of the cognitiveradio-based jammers and the anti-jamming capability of the cognitive radio networks (CRN). We use a Markov chain to model...In this paper, we conduct a cross-layer analysis of both the jamming capability of the cognitiveradio-based jammers and the anti-jamming capability of the cognitive radio networks (CRN). We use a Markov chain to model the CRN operations in spectrum sensing, channel access and channel switching under jamming. With various jamming models, the jamming probabilities and the throughputs of the CRN are obtained in closed-form expressions. Furthermore, the models and expressions are simplified to determine the minimum and the maximum CRN throughput expressions under jamming, and to optimize important anti-jamming parameters. The results are helpful for the optimal anti-jamming CRN design. The model and the analysis results are verified by simulations.展开更多
This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. First...This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.展开更多
Maritime communications with sea surface reflections and sea wave occlusions are susceptible to jamming attacks due to the wide geographical area and intensive wireless communication services.Unmanned Aerial Vehicles(...Maritime communications with sea surface reflections and sea wave occlusions are susceptible to jamming attacks due to the wide geographical area and intensive wireless communication services.Unmanned Aerial Vehicles(UAVs)help relay messages to improve communication performance,but the relay policy that depends on the rapidly changing maritime environments is difficult to optimize.In this paper,a reinforcement learning-based UAV relay policy for maritime communications is proposed to resist jamming attacks.Based on previous transmission performance,the relay location,the received power of the transmitted signal and the received jamming power,this scheme optimizes the UAV trajectory and relay power to save the energy consumption and decrease the Bit-Error-Rate(BER)of the maritime signals.A deep reinforcement learning-based scheme is also proposed,which designs a deep neural network with dueling architecture to further improve the communication performance and computational complexity.The performance bounds regarding the signal to interference plus noise ratio,energy consumption and the communication utility are provided based on the Nash equilibrium of the game against jamming,and the computational complexity of the proposed schemes is analyzed.Simulation results show that the proposed schemes improve the energy efficiency and decrease the BER compared with the benchmark.展开更多
A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synth...A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.展开更多
This paper researches on some key technologies of anti-jamming of an air-borne radar receiver, the automatic testing of AGC, IAGC and multi-filtering under one million noisy pulses by the computer simulation system. T...This paper researches on some key technologies of anti-jamming of an air-borne radar receiver, the automatic testing of AGC, IAGC and multi-filtering under one million noisy pulses by the computer simulation system. The system tests the width of the jamming pulse whose width is 100% bigger, 60% bigger and 100% smaller than the Radar signal’s respectively and show the SNR curve.展开更多
提出一种基于几何覆盖理论的Jamming攻击定位(GCL,geometry-covering based localization)算法。GCL算法利用计算几何中的凸壳理论,特别是最小包容圆方法,对Jamming攻击者进行定位。理论证明了该算法的正确性和较低的时间复杂度(O(nlogn...提出一种基于几何覆盖理论的Jamming攻击定位(GCL,geometry-covering based localization)算法。GCL算法利用计算几何中的凸壳理论,特别是最小包容圆方法,对Jamming攻击者进行定位。理论证明了该算法的正确性和较低的时间复杂度(O(nlogn));模拟实验表明,该算法在攻击者攻击范围、网络节点密度以及攻击者位置等度量值变化的情况下,比已有算法具有更好的定位准确度。展开更多
Efficient anti-jamming rateless coding based on cognitive Orthogonal Frequency Division Multiplexing (OFDM) modulation in Cognitive Radio Network (CRN) is mainly discussed. Rateless coding with small redundancy and lo...Efficient anti-jamming rateless coding based on cognitive Orthogonal Frequency Division Multiplexing (OFDM) modulation in Cognitive Radio Network (CRN) is mainly discussed. Rateless coding with small redundancy and low complexity is presented, and the optimal design methods of building rateless codes are also proposed. In CRN, anti-jamming rateless coding could recover the lost packets in parallel channels of cognitive OFDM, thus it protects Secondary Users (SUs) from the in-terference by Primary Users (PUs) efficiently. Frame Error Rate (FER) and throughput performance of SU employing anti-jamming rateless coding are analyzed in detail. Performance comparison between rateless coding and piecewise coding are also presented. It is shown that, anti-jamming rateless coding provides low FER and Word Error Rate (WER) performance with uniform sub-channel selection. Meanwhile, it is also verified that, in higher jamming rate and longer code redundancy scenario, rateless coding method could achieve better FER and throughput performance than another anti-jamming coding schemes.展开更多
Aim To get the theory base of designing FM fuze's jamming signal, its jamming mechanism was studied. Methods A sinusoidal FM fuze was analyzed in time domain and frequency domain and the concept of channel lea...Aim To get the theory base of designing FM fuze's jamming signal, its jamming mechanism was studied. Methods A sinusoidal FM fuze was analyzed in time domain and frequency domain and the concept of channel leak was presented. Results It was proved that information channel leak exists in FM fuze because of the nonlinear property of the mixer. The jamming signal was designed based on the channel leak and the jamming mechanism was analyzed in detail. Conclusion This kind of jamming signal can jam the sinusoidal FM fuzes effectively just depending on the jamming signal's feature itself. It's different from the traditional jamming way of simulating echo. Though the sinusoidal FM fuze was just analyzed, the principle is applicable to all FM fuzes. At the same time, it may be used as the reference for FM radar and communication countermeasures.展开更多
The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase ...The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.展开更多
基金Aeronautical Science Foundation of China (2007ZC53030)
文摘Based on the M-ary spread spectrum (M-ary-SS), direct sequence spread spectrum (DS-SS), and orthogonal frequency division multiplex (OFDM), a novel anti-jamming scheme, named orthogonal code time division multi-subchannels spread spectrum modulation (OC-TDMSCSSM), is proposed to enhance the anti-jamming ability of the unmanned aerial vehicle (UAV) data link. The anti-jamming system with its mathematical model is presented first, and then the signal formats of transmitter and receiver are derived. The receiver's bit error rate (BER) is demonstrated and anti-jamming performance analysis is carded out in an additive white Ganssian noise (AWGN) channel. Theoretical research and simulation results show the anti-jamming performance of the proposed scheme better than that of the hybrid direct sequence frequency hopping spread spectrum (DS/FH SS) system. The jamming margin of the OC-TDMSCSSM system is 5 dB higher than that of DS/FH SS system under the condition of Rician channel and full-band jamming, and 6 dB higher under the condition of Rician channel environment and partial-band jamming.
基金supported by the National Natural Science Foundation of China(6207148262001510)the Civil Aviation Administration o f China(U1733116)。
文摘Mainlobe jamming(MLJ)brings a big challenge for radar target detection,tracking,and identification.The suppression of MLJ is a hard task and an open problem in the electronic counter-counter measures(ECCM)field.Target parameters and target direction estimation is difficult in radar MLJ.A target parameter estimation method via atom-reconstruction in radar MLJ is proposed in this paper.The proposed method can suppress the MLJ and simultaneously provide high estimation accuracy of target range and angle.Precisely,the eigen-projection matrix processing(EMP)algorithm is adopted to suppress the MLJ,and the target range is estimated effectively through the beamforming and pulse compression.Then the target angle can be effectively estimated by the atom-reconstruction method.Without any prior knowledge,the MLJ can be canceled,and the angle estimation accuracy is well preserved.Furthermore,the proposed method does not have strict requirement for radar array construction,and it can be applied for linear array and planar array.Moreover,the proposed method can effectively estimate the target azimuth and elevation simultaneously when the target azimuth(or elevation)equals to the jamming azimuth(or elevation),because the MLJ is suppressed in spatial plane dimension.
文摘This paper investigates the jammerassisted multi-channel covert wireless communication(CWC)by exploiting the randomness of sub-channel selection to confuse the warden.In particular,we propose two sub-channel selection transmission schemes,named random sub-channel selection(RSS)scheme and maximum sub-channel selection(MSS)scheme,to enhance communication covertness.For each proposed scheme,we first derive closed-form expressions of the transmission outage probability(TOP),the average effective rate,and the minimum average detection error probability(DEP).Then,the average effective covert rate(ECR)is maximized by jointly optimizing the transmit power at the transmitter and the number of sub-channels.Numerical results show that there is an optimal value of the number of sub-channels that maximizes the average ECR.We also find that to achieve the maximum average ECR,a larger number of subchannels are needed facing a stricter covertness constraint.
基金the National Natural Science Foundation of China under Grant 61371125
文摘Based on the anti-jamming performance of differential frequency hopping (DFH) systems in Additive White Gaussian Noise (AWGN) channel, Fountain code is introduced to the DFH systems as the outer error correcting code in this paper to investigate the improvements against partial-band jamming over AWGN channel. The performance of Fountain coded DFH is theoretically analyzed and numerically simulated. The total frequency of hopping in the simulation is 16, and results show that, on one hand, when exact jamming state information (JSI) is available, and the number of jamming frequency is n= 16, the bit error rate (BER) of 10~3 is achieved with the signal to interference ratio (SIR) approximately 7.5 dB over AWGN channel, and the performance improves about 1-1.5dB compared with the no-coded system. When the number of jamming frequency is n=2, the performance increases 15-17dB. On the other hand, when JSI is unavailable, a joint JSI estimation and decoding algorithm is proposed. The BER of 10 3 is achieved with jamming-frequency n 16, SIR=8dB and signal noise ratio (SNR) 10dB over AWGN channel. It's proved that this algorithm provides robust anti-jamming pertbrmance even without JSI. The anti-jamming performance of Fountain coded DFH systems is obviously superior to no-coded DFH systems.
基金The National Natural Science Foundation of China(No.61531009,No.61471108)The National Major Projects of China(No.2016ZX03001009)。
文摘This paper deals with the follower jamming(FJ)resistance for the frequency hopping(FH)communication system over additive white Gaussian noise(AWGN)channel.Conventional FH systems are susceptible to be jammed by FJ,and multi-pattern frequency hopping(MPFH)has good resistance to FJ.To further improve the FJ rejection capability of MPFH,we propose a wide gap multi-pattern frequency hopping(WGMPFH)scheme.WGMPFH uses channels to represent messages,and the data channel and complementary channel are hopping on orthogonal frequency slots according to wide gap FH patterns.The transmitted signal lures FJ to aim at the data channel and the complementary channel is away from FJ by adopting wide gap frequency patterns.FJ does not affect the complementary channel but increases the signal energy in the data channel,thus the effect of FJ is reduced.Its bit error rate(BER)is derived under FJ and the effects of three FJ parameters(tracking success probability,jamming duration ratio and jamming bandwidth ratio)on the BER performance of WGMPFH are investigated versus the co nventional FH/BFSK and MPFH system.Numerical and simulation results show that when under the worst-case FJ,the proposed WGMPFH outperforms the MPFH by about 1-3 dB and outperforms the conventional FH/BFSK by more than 4 dB.The proposed WGMPFH shows superior jamming rejection performance under FJ especially in severe signal-to-jamming ratio(SJR).
基金supported by the Equipment Pre-research Project(GK202002A020068)。
文摘Passive jamming is believed to have very good potential in countermeasure community.In this paper,a passive angular blinking jamming method based on electronically controlled corner reflectors is proposed.The amplitude of the incident wave can be modulated by switching the corner reflector between the penetration state and the reflection state,and the ensemble of multiple corner reflectors with towing rope can result in complex angle decoying effects.Dependency of the decoying effect on corner reflectors’radar cross section and positions are analyzed and simulated.Results show that the angle measured by a monopulse radar can be significantly interfered by this method while the automatic tracking is employed.
基金the National Natural Science Foundation of China(Grant No.62101579).
文摘Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources.
基金supported by Shandong Provincial Natural Science Foundation(ZR2020MF015)Aerospace Technology Group Stability Support Project(ZY0110020009).
文摘In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.
文摘This paper investigates the anti-jamming trajectory design to safeguard the effective data collection, where a unmanned aerial vehicle(UAV)is dispatched to collect data over multiple sensor nodes(SNs) in jamming environment. Under the limited power and transmission range of SNs, we aim to minimize the UAV’s flight energy consumption in a finite task period, by jointly optimizing SNs collection sequence and UAV flight trajectory. Firstly, we propose a general optimization framework which consists of path planning and trajectory optimization for the formulated non-convex problem. In the path planning phase, a dynamic programming(DP) algorithm is used to provide the initial path of the UAV, which is the shortest path to visit each SN. In the trajectory optimization phase, we introduce the concept of Communication Flight Corridor(CFC) to meet the non-convex constraints and apply a piecewise Bézier curve, based on Bernoulli polynomial, to represent the flight trajectory of the UAV, which can transform the optimization variables from infinite time variables to polynomial coefficients of finite order. Finally, we simulate the flight trajectory of UAV in hovering mode and continuous flight mode under different parameters, and the simulation results demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(The Key Research of Beidou Receiver based on SFT,61301089)
文摘A communication and navigation receiver is required to remove hostile jamming signals and synchronize receiving signals effectively especially for satellite communication and navigation whose resources are becoming more and more limited. This paper proposes a novel signal receiving method by combining the pro- cesses of anti-jamming and synchronization to reduce the overall computationa~ complexity at the expense of slightly affecting the detection probability, which is analyzed in detail by derivations. Furthermore, this paper introduces sparse Fourier transformation (SFT) into the proposed algorithm to replace fast Fourier transfor- mation (FFT) so as to further reduce the calculation time especially in large frequency offset environments.
文摘In this paper, we conduct a cross-layer analysis of both the jamming capability of the cognitiveradio-based jammers and the anti-jamming capability of the cognitive radio networks (CRN). We use a Markov chain to model the CRN operations in spectrum sensing, channel access and channel switching under jamming. With various jamming models, the jamming probabilities and the throughputs of the CRN are obtained in closed-form expressions. Furthermore, the models and expressions are simplified to determine the minimum and the maximum CRN throughput expressions under jamming, and to optimize important anti-jamming parameters. The results are helpful for the optimal anti-jamming CRN design. The model and the analysis results are verified by simulations.
基金supported by the Program of the Aeronautical Science Foundation of China(2013ZC15003)
文摘This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.
基金This work was supported in part by the Funds of the National Natural Science Foundation of China under Grant(U21A20444,61971366)in part by the Fundamental Research Funds for the central universities No.20720210073.
文摘Maritime communications with sea surface reflections and sea wave occlusions are susceptible to jamming attacks due to the wide geographical area and intensive wireless communication services.Unmanned Aerial Vehicles(UAVs)help relay messages to improve communication performance,but the relay policy that depends on the rapidly changing maritime environments is difficult to optimize.In this paper,a reinforcement learning-based UAV relay policy for maritime communications is proposed to resist jamming attacks.Based on previous transmission performance,the relay location,the received power of the transmitted signal and the received jamming power,this scheme optimizes the UAV trajectory and relay power to save the energy consumption and decrease the Bit-Error-Rate(BER)of the maritime signals.A deep reinforcement learning-based scheme is also proposed,which designs a deep neural network with dueling architecture to further improve the communication performance and computational complexity.The performance bounds regarding the signal to interference plus noise ratio,energy consumption and the communication utility are provided based on the Nash equilibrium of the game against jamming,and the computational complexity of the proposed schemes is analyzed.Simulation results show that the proposed schemes improve the energy efficiency and decrease the BER compared with the benchmark.
基金the National Natural Science Foundation of China (60502045).
文摘A novel space-borne antenna adaptive anti-jamming method based on the genetic algorithm (GA), which is combined with gradient-like reproduction operators is presented, to search for the best weight for pattern synthesis in radio frequency (RF). Combined, the GA's the capability of the whole searching is, but not limited by selection of the initial parameter, with the gradient algorithm's advantage of fast searching. The proposed method requires a smaller sized initial population and lower computational complexity. Therefore, it is flexible to implement this method in the real-time systems. By using the proposed algorithm, the designer can efficiently control both main-lobe shaping and side-lobe level. Simulation results based on the spot survey data show that the algorithm proposed is efficient and feasible.
文摘This paper researches on some key technologies of anti-jamming of an air-borne radar receiver, the automatic testing of AGC, IAGC and multi-filtering under one million noisy pulses by the computer simulation system. The system tests the width of the jamming pulse whose width is 100% bigger, 60% bigger and 100% smaller than the Radar signal’s respectively and show the SNR curve.
文摘提出一种基于几何覆盖理论的Jamming攻击定位(GCL,geometry-covering based localization)算法。GCL算法利用计算几何中的凸壳理论,特别是最小包容圆方法,对Jamming攻击者进行定位。理论证明了该算法的正确性和较低的时间复杂度(O(nlogn));模拟实验表明,该算法在攻击者攻击范围、网络节点密度以及攻击者位置等度量值变化的情况下,比已有算法具有更好的定位准确度。
基金Supported by the National Natural Science Foundation of China (No. 60972039)the Scientific Planning Project of Zhejiang Province entitled "Research and Development of Smart Antenna for the Next Generation Mobile Com-munications Based on TDD"the Young Staff Startup Research Foundation of Hangzhou Dianzi University entitled "Research on Key Technologies of Resource Allocation in Cognitive Radio Networks Based on Multicarrier Modulation"
文摘Efficient anti-jamming rateless coding based on cognitive Orthogonal Frequency Division Multiplexing (OFDM) modulation in Cognitive Radio Network (CRN) is mainly discussed. Rateless coding with small redundancy and low complexity is presented, and the optimal design methods of building rateless codes are also proposed. In CRN, anti-jamming rateless coding could recover the lost packets in parallel channels of cognitive OFDM, thus it protects Secondary Users (SUs) from the in-terference by Primary Users (PUs) efficiently. Frame Error Rate (FER) and throughput performance of SU employing anti-jamming rateless coding are analyzed in detail. Performance comparison between rateless coding and piecewise coding are also presented. It is shown that, anti-jamming rateless coding provides low FER and Word Error Rate (WER) performance with uniform sub-channel selection. Meanwhile, it is also verified that, in higher jamming rate and longer code redundancy scenario, rateless coding method could achieve better FER and throughput performance than another anti-jamming coding schemes.
文摘Aim To get the theory base of designing FM fuze's jamming signal, its jamming mechanism was studied. Methods A sinusoidal FM fuze was analyzed in time domain and frequency domain and the concept of channel leak was presented. Results It was proved that information channel leak exists in FM fuze because of the nonlinear property of the mixer. The jamming signal was designed based on the channel leak and the jamming mechanism was analyzed in detail. Conclusion This kind of jamming signal can jam the sinusoidal FM fuzes effectively just depending on the jamming signal's feature itself. It's different from the traditional jamming way of simulating echo. Though the sinusoidal FM fuze was just analyzed, the principle is applicable to all FM fuzes. At the same time, it may be used as the reference for FM radar and communication countermeasures.
基金supported by the Weapons and Equipment Research Foundation of China(304070102)
文摘The total cross-eye gain of multiple-element retrodirective cross-eye jamming(MRCJ) in the presence of the platform skin return is a distribution rather than a constant value, due to the random variation in the phase of the skin return. Although the median value of the total cross-eye gain distribution had been analyzed in previous studies, the extreme values providing useful indications of the upper and lower bounds of the total cross-eye gain have not been analyzed until now. In this paper, the cumulative distribution function and the extreme values of the total cross-eye gain of MRCJ are derived. The angular error induced in threat monopulse radar as a figure of merit is used to analyze the performance of MRCJ system. Simulation results demonstrate the variation of the angular error and discuss the proper value of jamming-to-signal ratio(JSR) making the MRCJ system more effective in consideration of the whole distribution of the total cross-eye gain.