期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Anti-cracking Property of EVA-modified Polypropylene Fiber-reinforced Concrete Under Thermal-cooling Cycling Curing 被引量:2
1
作者 LIU Sifeng YANG Siyu +2 位作者 KONG Yaning WAN Tingting ZHAO Guorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第5期1109-1118,共10页
In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive ... In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further. 展开更多
关键词 anti-cracking property EVA-modified POLYPROPYLENE fiber-reinforced concrete thermal-cooling CYCLING CURING
下载PDF
Influence of polymer on shrinkage and anti-cracking performance of mortar 被引量:1
2
作者 LI Jiahe1),OU Jinping2),and WANG Zheng1)1) School of Material Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 2) School of Civil Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期120-123,共4页
A self-designed restrained ring test was applied to investigate cracking of mortar.The cracking total weigh W and cracking control rate K were applied to evaluate anti-cracking performance of mortar.Through the above ... A self-designed restrained ring test was applied to investigate cracking of mortar.The cracking total weigh W and cracking control rate K were applied to evaluate anti-cracking performance of mortar.Through the above method,the influence of polymer on the shrinkage and anti-cracking performance was studied.The microstructures of mortar specimens were investigated by means of SEM.The results indicated that the addition of polymer can efficiently reduce the shrinkage of mortar and improve the anti-cracking performance of mortar. 展开更多
关键词 MORTAR SHRINKAGE CRACKING anti-cracking
下载PDF
Influence of MB-value of Manufactured Sand on the Shrinkage and Cracking of High Strength Concrete 被引量:4
3
作者 王稷良 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期321-325,共5页
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack ... The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable. 展开更多
关键词 manufactured sand methylene blue value high strength concrete anti-cracking SHRINKAGE
下载PDF
Optimal Percentage of Reclaimed Asphalt Pavement in Central Plant Hot Recycling Mixture 被引量:3
4
作者 于新 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期659-662,共4页
For determining the optimal percentage of RAP material in central plant hot recycling, binder was recovered from RAP by means of Abson recovery method, and properties tests of mixed binders consisting of recovered asp... For determining the optimal percentage of RAP material in central plant hot recycling, binder was recovered from RAP by means of Abson recovery method, and properties tests of mixed binders consisting of recovered asphalt and fresh asphalt at different ratios were performed. In addition, the performances of mixture with different percentages of RAP such as rutting resistance, anti-cracking, moisture susceptibility and fatigue resistance were tested. The binder test results showed that the high temperature performance was improved with the increase of the percentage of the RAP, while the low temperature performance was declined. When the percentage of the recovered binder was less than 30%, the mixed binder could match the technical standards for fresh asphalt. Tests on the mixtures showed that rutting resistance increased gradually as RAP percentage increased, while thermal anti-cracking at low temperature and fatigue properties declined. The effect of the percentage of RAP on moisture susceptibility was limited. It is indicated that low temperature performance and fatigue properties are important for selecting the optimal percentage of RAP. Based on data obtained from binders and mixtures, it is concluded that the maximum percentage of RAP is approximately 30% without the addition of rejuvenating agent. 展开更多
关键词 central plant recycling RAP optimal percentage anti-cracking fatigue
下载PDF
The Properties of Road Base Course Materials of Granular Soils Stabilized by AGS Granular Soil Stabilizing Cement 被引量:2
5
作者 沈卫国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期89-91,共3页
The properties of road base course materials of granular soils stabilized by AGS granular soil stabilizing cement were studied.The AGS cement has an expansibility to a certain degree,so the dry shrinkage of AGS cemen... The properties of road base course materials of granular soils stabilized by AGS granular soil stabilizing cement were studied.The AGS cement has an expansibility to a certain degree,so the dry shrinkage of AGS cement paste and AGS stabilized granular is much lower than that of Portland slag cement.AGS has a good suitability to granular soils.Granular soils stabilized by AGS have a much higher strength than that of soils stabilized by P S cement.The same strength can be reached with 20% reduction of cement dosage for AGS cement.And their elastic and resilient modulus are similar,but the former has a much higher tensile splitting strength,so the AGS stabilized granular has a much better anti-cracking performance than that of the P S stabilized granular.The reduced value of the strength and the density with the retard time for the granular soils stabilized by AGS is lower than that for P S cement. 展开更多
关键词 AGS cement PROPERTY road base material anti-cracking performance
下载PDF
Effects of Filler-Asphalt Ratio on the Properties of Lignin and Polyester Fiber Reinforced SMPU/SBS Modified Asphalt Mortar
6
作者 Wenjing Xia Jinhui Wang +1 位作者 Tao Xu Nan Jiang 《Journal of Renewable Materials》 EI 2023年第8期3387-3402,共16页
To understand the effects offiller-asphalt ratio on different properties of lignin and polyesterfiber reinforced shape memory polyurethane(SMPU)/styrene butadiene styrene(SBS)composite modified asphalt mortar(PSAM),as we... To understand the effects offiller-asphalt ratio on different properties of lignin and polyesterfiber reinforced shape memory polyurethane(SMPU)/styrene butadiene styrene(SBS)composite modified asphalt mortar(PSAM),as well as to reveal the reinforcing and toughening mechanisms of lignin and polyesterfibers on PSAM,SMPU,SBS and mineral powder werefirst utilized to prepare PSAM.Then the conventional,rheological and anti-cracking properties of ligninfiber reinforced PSAM(LFAM)and polyesterfiber reinforced PSAM(PFAM)at dif-ferentfiller-asphalt ratios were characterized.Test results indicate that the shear strength,deformation resistance and viscosity are increased after adding 0.8wt%ligninfiber or polyesterfiber and increasing thefiller-asphalt ratio from 0.8 to 1.2.The optimalfiller-asphalt ratio of 1.0 is proposed after comprehensive performance assessments of PSAM.Polyesterfiber shows a better reinforcing effect than ligninfiber,but its improvement in the thermal stability of PSAM is not significant at high temperatures.Additionally,the complex modulus,storage modulus,loss modulus and rutting resistance factor of PSAM are improved after adding ligninfiber and polyesterfiber,as well as show an increasing trend as thefiller-asphalt ratio is raised,but the phase angle is gradually decreased.Further,the increase of elastic components in PSAM effectively enhances the anti-deformation ability of PSAM at high temperatures,and polyesterfiber more obviously improves the high-temperature deformation resistance of PSAM than ligninfiber.Finally,the anti-cracking performance of PFAM and LFAM at low temperatures is reduced by 74.2%and 46.7%,respectively,as thefiller-asphalt ratio is raised from 0.8 to 1.2.The low-temperature anti-cracking performance of LFAM is lower than that of PFAM at the samefiller-asphalt ratio,even lower than that of PSA.Compared with ligninfiber,the anti-cracking performance and deformation resistance of PSAM at low temperature is more greatly enhanced by polyester fiber. 展开更多
关键词 Asphalt mortar fiber reinforcement filler-asphalt ratio anti-cracking performance high-temperature stability deformation resistance
下载PDF
Anti-Crack Performance of Phosphorus Slag Concrete 被引量:9
7
作者 CHEN Xia ZENG Li FANG Kunhe 《Wuhan University Journal of Natural Sciences》 CAS 2009年第1期80-86,共7页
Anti-crack performance of concrete with phosphorus slag and fly ash singly and compositely added is investigated in terms of physical performance, hydration heat, dry shrinkage and creep. Index K is introduced to eval... Anti-crack performance of concrete with phosphorus slag and fly ash singly and compositely added is investigated in terms of physical performance, hydration heat, dry shrinkage and creep. Index K is introduced to evaluate the crack resistance of phosphorus slag concrete. Results show that the strength of phosphorus slag concrete increases with the increase of fineness, and when surface specific area is greater than 300 m^2/kg, the tendency slows down. Strength decreases with phosphorus slag content increasing and there is an optimal content existing between 30% and 50%. Both phosphorus slag and fly ash have obvious effect on elongating time setting, reducing hydration heat to a large extent and increasing creep value. Crack resistance of phosphorus slag concrete is divided into three stages, namely early hazardous stage, growth stage and later mature stage. With microstructure analysis, mechanism of effect of phosphorus slag on concrete performances and P and F on cement hydration is explored. It is concluded after comprehensive evaluation that the crack resistance of phosphorus slag concrete is approximate to, even to some extent better than that of fly ash concrete. 展开更多
关键词 phosphorus slag CREEP anti-crack performance MECHANISM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部