Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect ...Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.展开更多
Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine ...Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.展开更多
Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with ...Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.展开更多
A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charg...A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charges that endow the membrane with a high rejection and an excellent anti-fouling ability for target organic molecule and asymmetric structure that affords a high conductivity for vanadiummethylene blue flow battery(V-MB FB). The morphologies and thickness of separating layer in particular of the porous PBI can be well adjusted by simply altering the polymer concentration in the cast solution and further afford the membrane with a controllable property in terms of both ion selectivity and ion conductivity. As a result, a V-MB FB assembled with a porous PBI membrane delivers a coulombic efficiency(CE) of 99.45% and an energy efficiency(EE) of 86.10% at a current density of 40 mA cm^(-2), which is 12% higher than that afforded by a Nafion 212 membrane. Most importantly, the V-MB FB demonstrates a methylene blue(MB) utilization of 97.55% at a theoretical capacity of 32.16 Ah L^(-1)(based on the concentration of MB in the electrolyte) because of the high ion conductivity of the membrane, which favors reducing the cost of a battery. The results suggest that the designed porous PBI membranes exhibit a very promising prospect for methylene blue-vanadium flow battery.展开更多
An electromagnetic anti-fouling technology(EAFT) was developed further. The operating principle of the EAFT was presented using fundamental physics laws. To validate the effect of EAFT and identify the mechanism, a ci...An electromagnetic anti-fouling technology(EAFT) was developed further. The operating principle of the EAFT was presented using fundamental physics laws. To validate the effect of EAFT and identify the mechanism, a circulating flow setup was built. A series of fouling tests were carried out with and without EAFT, measuring fouling thermal resistance as function of time, making scanning electron microscope images and analyzing the particles size distribution in solution by dynamics light scattering technology. The main results were as follows: 1) All the precipitated crystals in solution were calcite and there were little differences between with EAFT and without EAFT in the experimental range. 2) The number of precipitate nucleation in solution was small and the particle growth was slow without EAFT. In opposition to the case untreated, a rapid particle growth was observed and the number of nucleation was expected to be large, due to the fact that the EAFT effectively increases the ions and crystals collision frequency and effectiveness by utilizing the induced electric field. It is indicated that the particle growth is promoted mainly by coagulation process but not nucleation growth. 3) The EAFT could prolong the delay time of fouling greatly, and after the delay time, the thermal resistance quickly increased. Therefore, in order to mitigate scale significantly, the floccules in solution should be deposited beforehand in a low-lying area of the exchangers and let off in time.展开更多
The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superp...The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superparamagnetic Fe_(3)O_(4) nanoparticles onto the surface of electrospun polyacrylonitrile nanofiber membrane(PANM).Compared with PANM,the water contact angle of MRANM decreased from 104°to 0°,indicating that the hydrophilicity of the membrane was significantly improved.For the emulsions of hexadecane,octane and rapeseed oil,the separation efficiency was 98.04%,96.59%and 92.67%,respectively.After the treatments in oscillating magnetic field,the separation efficiency kept above 95%after 8 times recycling,which indicated that the MRANM had good regenerability and reusability.The as-fabricated membrane with magnetic responsiveness facilitated an effective method for solving the membrane fouling problem during practical applications of separation high viscosity oil-water emulsion.展开更多
Marine fouling is the settlement and growth of a variety of marine organisms, such as bacteria, diatoms, protozoa and algae spores on structures immersed in seawater, such as ship's hulls, navigation buoys, and sonar...Marine fouling is the settlement and growth of a variety of marine organisms, such as bacteria, diatoms, protozoa and algae spores on structures immersed in seawater, such as ship's hulls, navigation buoys, and sonar equipment. Anti-fouling refers to material or systems used to prevent the accumulation of biological material on submerged surfaces. Bio-fouling results in higher fuel consumption and can also facilitate the transport of harmful NIS (Non-Indigenous Species). Antifouling technologies incorporating biocides (e.g., Tributyltin) have been developed to prevent fouling. Their widespread use, however, raised concerns about their toxic effects on marine communities. The AFS Convention (International Convention on the Control of Harmful Anti-fouling Systems in Ships) is a 2001 IMO (International Maritime Organization) treaty, whereby states agree to ban the use of harmful anti-fouling paints and other anti-fouling systems that contain harmful substances. Particularly, the use of the organotinTributyltin is prohibited, since leaching of that chemical from the hulls of ships has been shown to cause deleterious effects on some sea creatures. Although the AFS Convention has entered into force, its full implementation has not yet been appropriately achieved. Most of the ratifying States have delegated the Classification Society to inspect their ships to ensure the implementation of the provisions of the Convention. Since painting ships takes place in dry docks, the full control falls in the hands of Classification Societies.展开更多
The produced water from the oilfield was purified with filter material and then injected back into the ground.The serpentine filter material was easy to harden with the increase in filtration amount,which affected the...The produced water from the oilfield was purified with filter material and then injected back into the ground.The serpentine filter material was easy to harden with the increase in filtration amount,which affected the water quality.A superhydrophilic/underwater oleophobic serpentine filter material was successfully prepared by a simple method of coating modification,which exhibited long-lasting filtration of oily water,good filtration and anti-fouling properties,and resistance to harden.The film-forming material of the superhydrophilic/underwater oleophobic coating was composed of SiO_(2) particles with small size,which could completely and evenly cover the filter particle.The weight loss was only 7.6%after mechanical stirring for 90 min.Compared with the original filter material,the superhydrophilic/underwater oleophobic serpentine filter material showed a better anti-fouling ability and resistance to harden.The filtration of crude oil emulsion and oil slick sewage showed a better backwashing performance.After 35 cycles of continuous filtration of suspended solids in wastewater,the backwashing rate reached 78.4%.The results provided an effective method for the filtration of oily wastewater in the oilfield.展开更多
Solar-driven seawater evaporation is a potential strategy for mitigating global freshwater shortage,but its application is hindered by the photothermal membranes with high evaporation enthalpy,unsatisfactory photoabso...Solar-driven seawater evaporation is a potential strategy for mitigating global freshwater shortage,but its application is hindered by the photothermal membranes with high evaporation enthalpy,unsatisfactory photoabsorption,and easy contamination by microorganism.To solve these problems,herein we reported the design of manganese oxide/poly-L-lysine co-decorated carbon-fiber cloth(CFC)with decreased evaporation enthalpy and enhanced photoabsorption/antibacterial performance.Manganese oxide(MnO_(2))nanosheets(thickness:10-30 nm,diameter:400-450 nm)were grown in situ on the CFC surface by a hydrothermal method,and then the nanosheet surface was further decorated with poly-L-lysine(PLL)by the electrostatic adsorption.Co-decoration of MnO_(2)/PLL confers the conversion of hydrophobic CFC to superhydro-philic CFC/MnO_(2)/PLL,accompanied by the reduction of the evaporation enthalpy of bulk water to 2132.34 kJ kg-1 for CFC/MnO_(2)/PLL sample.Such CFC/MnO_(2)/PLL exhibits a strong photoabsorption in wide range(280-2500 nm)with an absorption efficiency of 97.8%,due to the light-trapping effects from hierarchical structures.Simultaneously,CFC/MnO_(2)/PLL has excellent antibacterial performance toward E.coli(99.1±0.2%)and S.aureus(98.2±0.5%)within 60 min in the dark,due to the electrostatic interaction between the bacterial cell membrane and PLL.Subsequently,CFC/MnO_(2)/PLL was hung between the seawater tank and empty tank to construct a hanging evaporator.Under 1.0 kW m^(-2)light irradiation,CFC/MnO_(2)/PLL shows a preeminent evaporation rate of 2.20 kg m^(-2)h^(-1).Importantly,when germy NaCl solution is evaporated,there is no solid-salt accumulation and bacteria contamination on CFC/MnO_(2)/PLL surface during the long-time test(12 h),conferring long-term anti-fouling seawater evaporation.Hence,this work provides new possibilities in the rational design of photothermal fabrics for solar-enabled efficient anti-fouling seawater desalination.展开更多
Given the diversity and complexity of coexisting oil/dyes/heavy metal ions/microorganisms in wastewater and volatile organic compounds(VOCs)in the air,developing separation materials featured in higher separation effi...Given the diversity and complexity of coexisting oil/dyes/heavy metal ions/microorganisms in wastewater and volatile organic compounds(VOCs)in the air,developing separation materials featured in higher separation efficiency and lower energy consumption for oil and water separation,pollutant removal,and anti-fouling is urgently needed,but it remains a major challenge till now.Herein,a multifunctional Ti_(3)C_(2)MXene membrane with unique double pillar support was proposed by liquid phase ultrasonication and vacuum filtration to over-come the above challenge.Introducing cetyl-trimethyl ammonium bromide(CTAB)and calcium chloride/sodium alginate(CaCl_(2)/SA)to the MXene membrane as crossed double pillars and superhydrophilic surface increases the tolerance and wettability of the membrane.The fabricated doubly pillared MXene(d-Ti_(3)C_(2))membrane exhibits superior oil/water(O/W)separation efficiency(99.76%)with flux(1.284 L m^(-2)h^(-1))for canola oil and organic dye removing efficiency for methyl blue(MB)99.85%,malachite green(MG)100%,and methyl violet(MV)99.72%,respectively,which is 1.05,1.44,1.22,and 1.28 fold compared with pre-pillared Ti_(3)C_(2)(p-Ti_(3)C_(2)).The superior anti-oil/dye/fouling is attributed to lower oil conglutination,high hydrophily,and antibacterial activity.The versatile MXene membrane also shows distinguished separation of VOCs(η>99%)from polluted air.The experimental and molecular dynamics(MD)computational simulation results illustrate that the superior sepa-ration efficiency of the Ti_(3)C_(2)MXene membrane is ascribed to the unique doubly pillared space channel.This study paves a new road to further research on one step integration strategy for complex O/W separation,wastewater and VOCs removal,and anti-fouling via tuning nano/macro architecture.展开更多
Direct deployment of gluing and achieving durable robust adhesion in water is challenging due to difficulty in repelling interface water.This work reports a novel hyperbranched polymer-based water-resistant adhesive(H...Direct deployment of gluing and achieving durable robust adhesion in water is challenging due to difficulty in repelling interface water.This work reports a novel hyperbranched polymer-based water-resistant adhesive(HBPBA)based on Michael addition reaction of multi-vinyl monomers with dopamine and 3-aminophenylboronic acid.Upon encountering water,the HBPBA forms coacervates whose hydrophobic chains aggregate to displace interface water,and meanwhile the catechols exposing outwards contribute to underwater adhesion.The HBPBA can strongly glue diverse substrates including PTFE,PE,PET,ceramic,Ti and stainless steel.The HBPBA can maintain stable adhesion in different environments,such as tap water,simulated sea water,PBS,and a wide range of pH solutions(pH 2 to 10)for 3 months,supposedly due to the complexation of catechol with boronic acid.Intriguingly,HBPBA film can be bonded to the titanium surface as a primer,which firmly anchors the antifouling PNAGAPCBAA hydrogel coating through copolymerization of remaining double bonds in HBPBA and NAGA plus CBAA.The PNAGA-PCBAA hydrogel-modified titanium is biocompatible and shows outstanding antifouling ability both in vitro and in vivo.This work proposes a new strategy for creating underwater deployable and water-resistant adhesives that may find promising applications in engineering and biomedical fields.展开更多
Zwitterions have aroused much interest to endow implantable medical devices with anti-fouling and anti-thrombosis performance,due to their ability to form a hydrated layer that can provide a good barrier against prote...Zwitterions have aroused much interest to endow implantable medical devices with anti-fouling and anti-thrombosis performance,due to their ability to form a hydrated layer that can provide a good barrier against protein and cell adhesion. Herein,tyramine modified sulfobetaine-derived sodium hyaluronan(HST) hydrogel coating was fabricated, in which hyaluronan(HA)was used as polysaccharide skeleton to graft zwitterionic sulfobetaine, and tyramine was introduced as crosslinker to construct both the network of hydrogel and a strong covalent bond between coating and substrate. Hydrogel coating was prepared by spin coating or painting HST prepolymer solution under ultraviolet light irradiation. The obtained HST hydrogel coating shows good stability. Moreover, in addition to its outstanding anti-fouling performance and good biocompatibility, it can effectively prevent thrombosis in blood circulation ex vivo. This work offers a universal strategy to prepare a high-performance anti-fouling and antithrombosis coating, which is expected to promote the development of functional coatings for biomedical materials.展开更多
The harsh working environment affects the performance and usage life of Al and its alloys,thus limiting their application.In recent years,Slippery Liquid-infused Porous Surface(SLIPS)has attracted much attention due t...The harsh working environment affects the performance and usage life of Al and its alloys,thus limiting their application.In recent years,Slippery Liquid-infused Porous Surface(SLIPS)has attracted much attention due to excellent anti-corrosion,anti-fouling and anti-icing properties.This may be an effective way to improve the properties of Al and its alloys.Here,the SLIPS with petal-like structure was constructed on the Al alloy via simple hydrothermal reaction,Stearic Acid(STA)modification and lubricant injection.A variety of droplets(including oil-in-water emulsions)can slide on the SLIPS at a low angle,even the Sliding Angle(SA)of the water droplet is only 3°.Furthermore,the SLIPS exhibits outstanding mechanical and chemical properties.It can maintain fine oil-locking ability under high shearing force and keep slippery stability after immersion in acid/alkaline solutions.In addition,the SLIPS possesses excellent anti-corrosion,anti-fouling and anti-icing properties,which provides a new way to promote the application of Al and its alloys.Therefore,the SLIPS is expected to be an effective way to improve the properties of Al and its alloys,as well as play a role in anti-fouling and self-cleaning in construction,shipbuilding and automotive manufacturing industries,thereby expanding the practical application of Al and its alloys.展开更多
A series of novel TiO2/poly(aryl ether sulfone) ultrafiltration membranes with anti-fouling and self-cleaning properties was designed and prepared. First, anti-photocatalytic degraded fluorine contained polv(aryl ethe...A series of novel TiO2/poly(aryl ether sulfone) ultrafiltration membranes with anti-fouling and self-cleaning properties was designed and prepared. First, anti-photocatalytic degraded fluorine contained polv(aryl ether sulfone) matrix(PAES-F) was synthesized. Then the composite membranes were prepared via TiO2 nanopartides and PAES-F polymer matrix by solution blending and non-solvent induced phase inversion methods. Further, separation efficiency, fouling behavior and self-cleaning property of the composite ultrafiltration(UF) membranes were investigated by dead-end filtration experiments using a polyacn lamide solution. The composite UF membranes exhibited outstanding self-cleaning efficiency and anti-photocatalytic degraded property after exposure to simulated sunliglit irradiation.The water flux recovery ratios(FRR)of the optimal composite UF membranes could reach 74.24%, which was attributable to photocatalytic degradation of the organic contaminant by TiO2. And the retention rates of the composite UF membranes could maintain over 97%, which indicated the excellent photocatalytic degradation resistance of the fluorine contained PAES-F matrix. The novel high perfomiance composite UF membranes have a broad application prospect in water treatment.展开更多
Herein,copper ion doped calcium alginate(Cu^(2+)/CaAlg)composite hydrogel filtration membranes were prepared by using natural polymer sodium alginate(NaAlg)as raw material.The thermal stability and structure of the co...Herein,copper ion doped calcium alginate(Cu^(2+)/CaAlg)composite hydrogel filtration membranes were prepared by using natural polymer sodium alginate(NaAlg)as raw material.The thermal stability and structure of the composite membranes were characterized by thermogravimetric analysis and infrared spectroscopy.The mechanical strength,anti-fouling performance,hydrophilicity and filtration performance of the membrane were studied.The results show that Cu^(2+)/CaAlg hydrogel membrane has excelle nt mechanical properties and thermal stability.The anti-swelling ability of the membrane was greatly enhanced by doping Cu^(2+).After three alternate filtration cycles,the flux recovery rate of Cu^(2+)/CaAlg hydrogel membrane can still reach 85%,indicating that the membrane has good antipollution performance.When the operation pressure was 0.1 MPa,the rejection of coomassie brilliant blue G250 reached 99.8%with a flux of 46.3 L m^(-2)h^(-1),while the Na_(2)SO_(4) rejection was less than 10.0%.The Cu^(2+)/CaAlg membrane was recycled after 24 h in the filtration process,and its flux and rejection rate did not decrease significantly,indicating that the hydrogel membrane has long-term application potential.The Cu^(2+)/CaAlg membrane has a wide range of applications prospect in dye desalination,fine separation and biopharmaceutical technology fields.展开更多
Antifouling ability and blood compatibility are critically important in the development of medical metallic implants for clinical applications.Here,we report the zwitterionic-phosphonate block polymer as a new type of...Antifouling ability and blood compatibility are critically important in the development of medical metallic implants for clinical applications.Here,we report the zwitterionic-phosphonate block polymer as a new type of high-efficiency antifouling coating for metallic substrates.Six block polymers(pSBMA-b-pDEMMP)with different segment lengths(nSBMA:nDEMMP=10:25,40:25,100:25,75:5,75:40,75:100)were prepared and anchored on titanium alloy(TC4)substrates.1H nuclear magnetic resonance(NMR)results clearly showed the precise preparation of the block polymers.XPS analysis and water contact angle measurement indicated the successful construction of the block polymer on TC4 substrates.The relationship between the antifouling performance of the polymer coating and the length of pDEMMP and pSBMA segments in the block polymer was established.Results showed that the polymer containing the pSBMA segment above 40 repeat units could significantly inhibit protein adsorption,platelet adhesion,bacterial adhesion and cell adhesion,while the pDEMMP segment above 5 repeat units is able to generate stable zwitterionic polymer coating on TC4 substrates.This ease of production and high-efficiency antifouling modification strategy elucidated here may find broad application for biomedical implants and devices in clinical applications.展开更多
The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous proble...The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.展开更多
In order to solve the problem of fouling of submerged optical instruments,an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration(SSC)in natural waters...In order to solve the problem of fouling of submerged optical instruments,an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration(SSC)in natural waters.Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials,and to verify the effectiveness of air-blast cleaning in reducing fouling.Results indicated that sensors with an aluminum case experienced more serious bio-fouling than that with polyethylene case,and the air-blast cleaning mechanism was capable of reducing fouling effect on sensor signals.So the submerged optical instruments should avoid using metal materials.The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions.展开更多
Superhydrophobic coatings have tremendous potential for cotton fabric applications in antifouling and antibacterial.Despite great scientific and industrial interest in waterproof cellulosic cotton,its application in c...Superhydrophobic coatings have tremendous potential for cotton fabric applications in antifouling and antibacterial.Despite great scientific and industrial interest in waterproof cellulosic cotton,its application in cotton fibres has been hindered by complicated processes,templates requirement,and limitations in scale-up production.Herein,we prepared a hydrophobic coating using one-step hydrolysis of siloxane.Through the reaction of long-chain organosilanes with acid,micro/nanostructures with low surface energy were constructed on the cotton fabric surface.Notably,the coating not only imparts self-cleaning and anti-bacterial adhesion properties to cotton fabrics,but also maintains a contact angle of over 140°after treatment with acid,alkali,organic solvents and extreme temperatures.In addition,the coating can be applied to a wide range of metals,plastics and paper to provide antifouling properties.This study believes that these excellent overall properties possess enormous potential for various applications involving anti-fouling.展开更多
Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]...Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.展开更多
基金Project(ZR2022QD001)supported by the Shandong Provincial Natural Science Youth Fund Project,ChinaProject(42306228)supported by the National Natural Science Foundation of ChinaProject(2022CXPT027)supported by the Key R&D Program of Shandong Province,China。
文摘Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.
基金supported by the Major Project of Ningbo Science and Technology Innovation 2025(2021Z092)the Defense Industrial Technology Development Program(JCKY2021513B001).
文摘Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.
基金Supported by the Natural Science Foundation of Shandong Province(Q2007B01)
文摘Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltration(UF)process.In this study,a sulfonated-polyethersulfone(SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods.The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS)and FT-IR spectrometer.The morphology and hydrophilicity were characterized by scanning electron microscopy(SEM),atomic force microscopy(AFM)and contact angle goniometer,respectively.The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface.The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.
基金financial support from NSFC (22075121)the Youth Innovation Promotion Association CAS (2019182)+1 种基金the Dalian Science and Technology Innovation Project (2020JJ26GX031)the DNL Cooperation Found,CAS(DNL201910)。
文摘A cost-effective, high-performance and highly stable membrane has always been in intensively needed in aqueous organic-based flow batteries. Here we present a porous polybenzimidazole(PBI) membrane with positive charges that endow the membrane with a high rejection and an excellent anti-fouling ability for target organic molecule and asymmetric structure that affords a high conductivity for vanadiummethylene blue flow battery(V-MB FB). The morphologies and thickness of separating layer in particular of the porous PBI can be well adjusted by simply altering the polymer concentration in the cast solution and further afford the membrane with a controllable property in terms of both ion selectivity and ion conductivity. As a result, a V-MB FB assembled with a porous PBI membrane delivers a coulombic efficiency(CE) of 99.45% and an energy efficiency(EE) of 86.10% at a current density of 40 mA cm^(-2), which is 12% higher than that afforded by a Nafion 212 membrane. Most importantly, the V-MB FB demonstrates a methylene blue(MB) utilization of 97.55% at a theoretical capacity of 32.16 Ah L^(-1)(based on the concentration of MB in the electrolyte) because of the high ion conductivity of the membrane, which favors reducing the cost of a battery. The results suggest that the designed porous PBI membranes exhibit a very promising prospect for methylene blue-vanadium flow battery.
文摘An electromagnetic anti-fouling technology(EAFT) was developed further. The operating principle of the EAFT was presented using fundamental physics laws. To validate the effect of EAFT and identify the mechanism, a circulating flow setup was built. A series of fouling tests were carried out with and without EAFT, measuring fouling thermal resistance as function of time, making scanning electron microscope images and analyzing the particles size distribution in solution by dynamics light scattering technology. The main results were as follows: 1) All the precipitated crystals in solution were calcite and there were little differences between with EAFT and without EAFT in the experimental range. 2) The number of precipitate nucleation in solution was small and the particle growth was slow without EAFT. In opposition to the case untreated, a rapid particle growth was observed and the number of nucleation was expected to be large, due to the fact that the EAFT effectively increases the ions and crystals collision frequency and effectiveness by utilizing the induced electric field. It is indicated that the particle growth is promoted mainly by coagulation process but not nucleation growth. 3) The EAFT could prolong the delay time of fouling greatly, and after the delay time, the thermal resistance quickly increased. Therefore, in order to mitigate scale significantly, the floccules in solution should be deposited beforehand in a low-lying area of the exchangers and let off in time.
基金supported by the National Natural Science Founda-tion of China(22078347)National Natural Science Foundation of China(21961160745)+2 种基金Key Research and Development Program of Hebei Province,China(20374001D,21373303D)Science and Technology Program of Guanshanhu([2020]13)Program of Inno-vation Academy for Green Manufacture,CAS(IAGM2020C04).
文摘The magnetically responsive anti-fouling nanofiber membrane(MRANM)was fabricated for efficient oilwater emulsion separation,which could be cleaned using oscillating magnetic field.MRANM was prepared by grafting superparamagnetic Fe_(3)O_(4) nanoparticles onto the surface of electrospun polyacrylonitrile nanofiber membrane(PANM).Compared with PANM,the water contact angle of MRANM decreased from 104°to 0°,indicating that the hydrophilicity of the membrane was significantly improved.For the emulsions of hexadecane,octane and rapeseed oil,the separation efficiency was 98.04%,96.59%and 92.67%,respectively.After the treatments in oscillating magnetic field,the separation efficiency kept above 95%after 8 times recycling,which indicated that the MRANM had good regenerability and reusability.The as-fabricated membrane with magnetic responsiveness facilitated an effective method for solving the membrane fouling problem during practical applications of separation high viscosity oil-water emulsion.
文摘Marine fouling is the settlement and growth of a variety of marine organisms, such as bacteria, diatoms, protozoa and algae spores on structures immersed in seawater, such as ship's hulls, navigation buoys, and sonar equipment. Anti-fouling refers to material or systems used to prevent the accumulation of biological material on submerged surfaces. Bio-fouling results in higher fuel consumption and can also facilitate the transport of harmful NIS (Non-Indigenous Species). Antifouling technologies incorporating biocides (e.g., Tributyltin) have been developed to prevent fouling. Their widespread use, however, raised concerns about their toxic effects on marine communities. The AFS Convention (International Convention on the Control of Harmful Anti-fouling Systems in Ships) is a 2001 IMO (International Maritime Organization) treaty, whereby states agree to ban the use of harmful anti-fouling paints and other anti-fouling systems that contain harmful substances. Particularly, the use of the organotinTributyltin is prohibited, since leaching of that chemical from the hulls of ships has been shown to cause deleterious effects on some sea creatures. Although the AFS Convention has entered into force, its full implementation has not yet been appropriately achieved. Most of the ratifying States have delegated the Classification Society to inspect their ships to ensure the implementation of the provisions of the Convention. Since painting ships takes place in dry docks, the full control falls in the hands of Classification Societies.
基金The National Natural Science Foundation of China(No.52071076)Opening Project of State Key Laboratory of Advanced Technology for Float Glass(Grant 2022KF03)are gratefully acknowledged.
文摘The produced water from the oilfield was purified with filter material and then injected back into the ground.The serpentine filter material was easy to harden with the increase in filtration amount,which affected the water quality.A superhydrophilic/underwater oleophobic serpentine filter material was successfully prepared by a simple method of coating modification,which exhibited long-lasting filtration of oily water,good filtration and anti-fouling properties,and resistance to harden.The film-forming material of the superhydrophilic/underwater oleophobic coating was composed of SiO_(2) particles with small size,which could completely and evenly cover the filter particle.The weight loss was only 7.6%after mechanical stirring for 90 min.Compared with the original filter material,the superhydrophilic/underwater oleophobic serpentine filter material showed a better anti-fouling ability and resistance to harden.The filtration of crude oil emulsion and oil slick sewage showed a better backwashing performance.After 35 cycles of continuous filtration of suspended solids in wastewater,the backwashing rate reached 78.4%.The results provided an effective method for the filtration of oily wastewater in the oilfield.
基金supported by the National Key R&D Program Projects(2022YFB3804905,2022YFB3804902)the National Natural Science Foundation of China(52161145406,42376045)+1 种基金the Fundamental Resaearch Funds for the Central Universities(2232024Y-01)the Natural Science Foundation of Shanghai(21ZR1402500).
文摘Solar-driven seawater evaporation is a potential strategy for mitigating global freshwater shortage,but its application is hindered by the photothermal membranes with high evaporation enthalpy,unsatisfactory photoabsorption,and easy contamination by microorganism.To solve these problems,herein we reported the design of manganese oxide/poly-L-lysine co-decorated carbon-fiber cloth(CFC)with decreased evaporation enthalpy and enhanced photoabsorption/antibacterial performance.Manganese oxide(MnO_(2))nanosheets(thickness:10-30 nm,diameter:400-450 nm)were grown in situ on the CFC surface by a hydrothermal method,and then the nanosheet surface was further decorated with poly-L-lysine(PLL)by the electrostatic adsorption.Co-decoration of MnO_(2)/PLL confers the conversion of hydrophobic CFC to superhydro-philic CFC/MnO_(2)/PLL,accompanied by the reduction of the evaporation enthalpy of bulk water to 2132.34 kJ kg-1 for CFC/MnO_(2)/PLL sample.Such CFC/MnO_(2)/PLL exhibits a strong photoabsorption in wide range(280-2500 nm)with an absorption efficiency of 97.8%,due to the light-trapping effects from hierarchical structures.Simultaneously,CFC/MnO_(2)/PLL has excellent antibacterial performance toward E.coli(99.1±0.2%)and S.aureus(98.2±0.5%)within 60 min in the dark,due to the electrostatic interaction between the bacterial cell membrane and PLL.Subsequently,CFC/MnO_(2)/PLL was hung between the seawater tank and empty tank to construct a hanging evaporator.Under 1.0 kW m^(-2)light irradiation,CFC/MnO_(2)/PLL shows a preeminent evaporation rate of 2.20 kg m^(-2)h^(-1).Importantly,when germy NaCl solution is evaporated,there is no solid-salt accumulation and bacteria contamination on CFC/MnO_(2)/PLL surface during the long-time test(12 h),conferring long-term anti-fouling seawater evaporation.Hence,this work provides new possibilities in the rational design of photothermal fabrics for solar-enabled efficient anti-fouling seawater desalination.
基金supported by the Zhejiang Province Key Research and Development Project(2023C01191).
文摘Given the diversity and complexity of coexisting oil/dyes/heavy metal ions/microorganisms in wastewater and volatile organic compounds(VOCs)in the air,developing separation materials featured in higher separation efficiency and lower energy consumption for oil and water separation,pollutant removal,and anti-fouling is urgently needed,but it remains a major challenge till now.Herein,a multifunctional Ti_(3)C_(2)MXene membrane with unique double pillar support was proposed by liquid phase ultrasonication and vacuum filtration to over-come the above challenge.Introducing cetyl-trimethyl ammonium bromide(CTAB)and calcium chloride/sodium alginate(CaCl_(2)/SA)to the MXene membrane as crossed double pillars and superhydrophilic surface increases the tolerance and wettability of the membrane.The fabricated doubly pillared MXene(d-Ti_(3)C_(2))membrane exhibits superior oil/water(O/W)separation efficiency(99.76%)with flux(1.284 L m^(-2)h^(-1))for canola oil and organic dye removing efficiency for methyl blue(MB)99.85%,malachite green(MG)100%,and methyl violet(MV)99.72%,respectively,which is 1.05,1.44,1.22,and 1.28 fold compared with pre-pillared Ti_(3)C_(2)(p-Ti_(3)C_(2)).The superior anti-oil/dye/fouling is attributed to lower oil conglutination,high hydrophily,and antibacterial activity.The versatile MXene membrane also shows distinguished separation of VOCs(η>99%)from polluted air.The experimental and molecular dynamics(MD)computational simulation results illustrate that the superior sepa-ration efficiency of the Ti_(3)C_(2)MXene membrane is ascribed to the unique doubly pillared space channel.This study paves a new road to further research on one step integration strategy for complex O/W separation,wastewater and VOCs removal,and anti-fouling via tuning nano/macro architecture.
基金supported by the National Key Research and Development Program(Grant No.2018YFA0703100)the National Natural Science Foundation of China(Grant No.51733006)。
文摘Direct deployment of gluing and achieving durable robust adhesion in water is challenging due to difficulty in repelling interface water.This work reports a novel hyperbranched polymer-based water-resistant adhesive(HBPBA)based on Michael addition reaction of multi-vinyl monomers with dopamine and 3-aminophenylboronic acid.Upon encountering water,the HBPBA forms coacervates whose hydrophobic chains aggregate to displace interface water,and meanwhile the catechols exposing outwards contribute to underwater adhesion.The HBPBA can strongly glue diverse substrates including PTFE,PE,PET,ceramic,Ti and stainless steel.The HBPBA can maintain stable adhesion in different environments,such as tap water,simulated sea water,PBS,and a wide range of pH solutions(pH 2 to 10)for 3 months,supposedly due to the complexation of catechol with boronic acid.Intriguingly,HBPBA film can be bonded to the titanium surface as a primer,which firmly anchors the antifouling PNAGAPCBAA hydrogel coating through copolymerization of remaining double bonds in HBPBA and NAGA plus CBAA.The PNAGA-PCBAA hydrogel-modified titanium is biocompatible and shows outstanding antifouling ability both in vitro and in vivo.This work proposes a new strategy for creating underwater deployable and water-resistant adhesives that may find promising applications in engineering and biomedical fields.
基金supported by the National Key Research and Development Program of China (Grant No. 2018YFC1105500)the National Natural Science Foundation of China (Grant Nos. U20A20261,31870948,31971250,and 52073205)the Natural Science Foundation of Tianjin (Grant Nos. 20JCYBJC00660 and 21JCYBJC00560)。
文摘Zwitterions have aroused much interest to endow implantable medical devices with anti-fouling and anti-thrombosis performance,due to their ability to form a hydrated layer that can provide a good barrier against protein and cell adhesion. Herein,tyramine modified sulfobetaine-derived sodium hyaluronan(HST) hydrogel coating was fabricated, in which hyaluronan(HA)was used as polysaccharide skeleton to graft zwitterionic sulfobetaine, and tyramine was introduced as crosslinker to construct both the network of hydrogel and a strong covalent bond between coating and substrate. Hydrogel coating was prepared by spin coating or painting HST prepolymer solution under ultraviolet light irradiation. The obtained HST hydrogel coating shows good stability. Moreover, in addition to its outstanding anti-fouling performance and good biocompatibility, it can effectively prevent thrombosis in blood circulation ex vivo. This work offers a universal strategy to prepare a high-performance anti-fouling and antithrombosis coating, which is expected to promote the development of functional coatings for biomedical materials.
基金supported by the National Natural Science Foundation of China(no.51735013 and 51905520)the Pre‐Research Program in National 14th Five‐Year Plan(grant number 61409230614).
文摘The harsh working environment affects the performance and usage life of Al and its alloys,thus limiting their application.In recent years,Slippery Liquid-infused Porous Surface(SLIPS)has attracted much attention due to excellent anti-corrosion,anti-fouling and anti-icing properties.This may be an effective way to improve the properties of Al and its alloys.Here,the SLIPS with petal-like structure was constructed on the Al alloy via simple hydrothermal reaction,Stearic Acid(STA)modification and lubricant injection.A variety of droplets(including oil-in-water emulsions)can slide on the SLIPS at a low angle,even the Sliding Angle(SA)of the water droplet is only 3°.Furthermore,the SLIPS exhibits outstanding mechanical and chemical properties.It can maintain fine oil-locking ability under high shearing force and keep slippery stability after immersion in acid/alkaline solutions.In addition,the SLIPS possesses excellent anti-corrosion,anti-fouling and anti-icing properties,which provides a new way to promote the application of Al and its alloys.Therefore,the SLIPS is expected to be an effective way to improve the properties of Al and its alloys,as well as play a role in anti-fouling and self-cleaning in construction,shipbuilding and automotive manufacturing industries,thereby expanding the practical application of Al and its alloys.
基金Supported by the National Natural Science Foundation of China(Nos.51508078, 51478095)the Jilin Provincial Science and Technology Development Project of China(No.20160520023JH)+1 种基金the Science and Technology Research Project of the Jilin Provincial Education Department, China(No.JJKH20180021KJ)the Fundamental Research Funds for the Central Universities ofCliina(No.2412018ZD016).
文摘A series of novel TiO2/poly(aryl ether sulfone) ultrafiltration membranes with anti-fouling and self-cleaning properties was designed and prepared. First, anti-photocatalytic degraded fluorine contained polv(aryl ether sulfone) matrix(PAES-F) was synthesized. Then the composite membranes were prepared via TiO2 nanopartides and PAES-F polymer matrix by solution blending and non-solvent induced phase inversion methods. Further, separation efficiency, fouling behavior and self-cleaning property of the composite ultrafiltration(UF) membranes were investigated by dead-end filtration experiments using a polyacn lamide solution. The composite UF membranes exhibited outstanding self-cleaning efficiency and anti-photocatalytic degraded property after exposure to simulated sunliglit irradiation.The water flux recovery ratios(FRR)of the optimal composite UF membranes could reach 74.24%, which was attributable to photocatalytic degradation of the organic contaminant by TiO2. And the retention rates of the composite UF membranes could maintain over 97%, which indicated the excellent photocatalytic degradation resistance of the fluorine contained PAES-F matrix. The novel high perfomiance composite UF membranes have a broad application prospect in water treatment.
基金supported by National Natural Science Foundation of China(Nos.51678409,51708406,51708407)Tianjin Science Technology Research Funds of China(Nos.16JCZDJC37500,15JCZDJC38300)Tianjin Science and Technology Plan Project(No.18ZXJMTG00120)。
文摘Herein,copper ion doped calcium alginate(Cu^(2+)/CaAlg)composite hydrogel filtration membranes were prepared by using natural polymer sodium alginate(NaAlg)as raw material.The thermal stability and structure of the composite membranes were characterized by thermogravimetric analysis and infrared spectroscopy.The mechanical strength,anti-fouling performance,hydrophilicity and filtration performance of the membrane were studied.The results show that Cu^(2+)/CaAlg hydrogel membrane has excelle nt mechanical properties and thermal stability.The anti-swelling ability of the membrane was greatly enhanced by doping Cu^(2+).After three alternate filtration cycles,the flux recovery rate of Cu^(2+)/CaAlg hydrogel membrane can still reach 85%,indicating that the membrane has good antipollution performance.When the operation pressure was 0.1 MPa,the rejection of coomassie brilliant blue G250 reached 99.8%with a flux of 46.3 L m^(-2)h^(-1),while the Na_(2)SO_(4) rejection was less than 10.0%.The Cu^(2+)/CaAlg membrane was recycled after 24 h in the filtration process,and its flux and rejection rate did not decrease significantly,indicating that the hydrogel membrane has long-term application potential.The Cu^(2+)/CaAlg membrane has a wide range of applications prospect in dye desalination,fine separation and biopharmaceutical technology fields.
基金This work was financially supported by the Six Talent Peaks Project in Jiangsu Province(No.SWYY-060)the National Natural Science Foundation of China(No.21504046)the Projects of Nanjing Normal University(Nos.184080H20192,184080H10386 and 184080H202B283).
文摘Antifouling ability and blood compatibility are critically important in the development of medical metallic implants for clinical applications.Here,we report the zwitterionic-phosphonate block polymer as a new type of high-efficiency antifouling coating for metallic substrates.Six block polymers(pSBMA-b-pDEMMP)with different segment lengths(nSBMA:nDEMMP=10:25,40:25,100:25,75:5,75:40,75:100)were prepared and anchored on titanium alloy(TC4)substrates.1H nuclear magnetic resonance(NMR)results clearly showed the precise preparation of the block polymers.XPS analysis and water contact angle measurement indicated the successful construction of the block polymer on TC4 substrates.The relationship between the antifouling performance of the polymer coating and the length of pDEMMP and pSBMA segments in the block polymer was established.Results showed that the polymer containing the pSBMA segment above 40 repeat units could significantly inhibit protein adsorption,platelet adhesion,bacterial adhesion and cell adhesion,while the pDEMMP segment above 5 repeat units is able to generate stable zwitterionic polymer coating on TC4 substrates.This ease of production and high-efficiency antifouling modification strategy elucidated here may find broad application for biomedical implants and devices in clinical applications.
基金the financial support provided by the National Natural Science Foundation of China(Nos.22108125,21971113,and 22175094)Independent Innovation of Agricultural Science and Technology in Jiangsu Province(Nos.CX(21)3166,and CX(21)3163)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210627)Doctor Project of Mass Entrepreneurship and Innovation in Jiangsu Province(No.JSSCBS20210549)Nanjing Science&Technology Innovation Project for Personnel Studying Abroad and Research Start-up Funding of Nanjing Forestry University(No.163020259)Q.C.Z.appreciates the funding support from City University of Hong Kong and Hong Kong Institute for Advanced Study,City University of Hong Kong.
文摘The clearwater obtained from stabilized oily wastewater has become a worldwide challenge.Nowdays,the area of oil/water emulsion separation materials have accomplished great progress,but still faces the enormous problems of low flux,poor stability,and pollution resistance.Nanocelluloses(cellulose nanocrystals(CNC))with the advantages of hydrophilicity,ecofriendliness,and regeneration are ideal materials for the construction of separation membranes.In this paper,a flexible,antifouling,and durable nanocellulose-based membrane functionalized by block copolymer(poly(N-isopropylacrylamide)-b-poly(N,Ndimethylaminoethyl methacrylate))is prepared via chemical modification and self-assembly,showing high separation efficiency(above 99.6%)for stabilized oil-in-water emulsions,excellent anti-fouling and cycling stability,high-temperature resistance,and acid and alkali resistance.More importantly,the composite membrane has ultra-high flux in separating oil-in-water emulsions(29,003 L·m^(−2)·h^(−1)·bar^(−1))and oil/water mixture(51,444 L·m^(−2)·h^(−1)·bar^(−1)),which ensures high separation efficiency.With its durability,easy scale-up,and green regeneration,we envision this biomass-derived membrane will be an alternative to the existing commercial filter membrane in environmental remediation.
基金The authors acknowledge that this research was supported by the Environmental Security Technology Certification(ESTCP)program,U.S.Department of Defensethe National Natural Science Foundation of China(Grant No.51309103)。
文摘In order to solve the problem of fouling of submerged optical instruments,an air-blast cleaning mechanism was integrated into an optical sensor used for measuring suspended sediment concentration(SSC)in natural waters.Laboratory experiments in a manually created fouling environment were conducted to observe the fouling process on sensor cases made of different materials,and to verify the effectiveness of air-blast cleaning in reducing fouling.Results indicated that sensors with an aluminum case experienced more serious bio-fouling than that with polyethylene case,and the air-blast cleaning mechanism was capable of reducing fouling effect on sensor signals.So the submerged optical instruments should avoid using metal materials.The duration and frequency of air-blast cleaning can be determined and adjusted depending on actual field conditions.
基金supported by the National Natural Science Foundation of China(No.22305230),the Zhengzhou University“Qiu Shi Program”Research Initiation Fund Project(No.32213526)the Open Project of the Key Laboratory of Bio-inspired Materials and Interfacial Science of the Chinese Academy of Sciences(No.BMIS202307)the China Postdoctoral Science Foundation(Nos.2021M690281 and 2019M660400).
文摘Superhydrophobic coatings have tremendous potential for cotton fabric applications in antifouling and antibacterial.Despite great scientific and industrial interest in waterproof cellulosic cotton,its application in cotton fibres has been hindered by complicated processes,templates requirement,and limitations in scale-up production.Herein,we prepared a hydrophobic coating using one-step hydrolysis of siloxane.Through the reaction of long-chain organosilanes with acid,micro/nanostructures with low surface energy were constructed on the cotton fabric surface.Notably,the coating not only imparts self-cleaning and anti-bacterial adhesion properties to cotton fabrics,but also maintains a contact angle of over 140°after treatment with acid,alkali,organic solvents and extreme temperatures.In addition,the coating can be applied to a wide range of metals,plastics and paper to provide antifouling properties.This study believes that these excellent overall properties possess enormous potential for various applications involving anti-fouling.
基金support of this work by National Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.