Oxidative stress disturbs the balance between the production of reactive oxygen species(ROS)and the detoxification biological process.It plays an important role in the development and progression of many chronic disea...Oxidative stress disturbs the balance between the production of reactive oxygen species(ROS)and the detoxification biological process.It plays an important role in the development and progression of many chronic diseases.Upon exposure to oxidative stress or the inducers of ROS,the cellular nucleus undergoes some biological processes via different signaling pathways,such as stress adaption through the forkhead box O signaling pathway,inflammatory response through the IκB kinase/nuclear factor-κB signaling pathway,hypoxic response via the hypoxia-inducible factor/prolyl hydroxylase domain proteins pathway,DNA repair or apoptosis through the p53 signaling pathway,and antioxidant response through the Kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 signaling pathway.These processes are involved in many diseases.Therefore,oxidative stress has gained more attraction as a targeting process for disease treatment.Meanwhile,anti-oxidative stress agents have been widely explored in pre-clinical trials.However,only limited clinical trials are performed to evaluate the efficacy of anti-oxidative stress agents or antioxidants in diseases.In this letter,we further discuss the current clinical trials related to anti-oxidative stress treatment in different diseases.More pre-clinical studies and clinical trials are expected to use anti-oxidative stress strategies as disease treatment or dietary supplementation to improve disease treatment outcomes.展开更多
Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between ...Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg; and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (HzO2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-C1-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+ 150 mEq kg^-1 DM, CON), high DCAD (+300 mEq kg^-1 DM, HD), low DCAD (0 mEq kg^-1 DM, LD) and negative DCAD (-150 mEq kg^-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P〈0.0001) with reduced DCAD and there was a strong association between DCAD and urine pH (R2=0.793, P〈0.0001). Compared with CON and HD feeding of LD and ND resulted in greater (P〈0.05) plasma Ca concentration. Plasma P level was increased (P〈0.05) when anionic salts were supplemented. The DCAD alteration did not affected (P〉0.05) plasma Mg level. There was no significant (P〉0.05) difference in plasma GSH-Px activity and H202, but anionic salts supplementation in LD and ND significantly increased (P〈0.05) plasma T-SOD activity and tended to reduce MDA (P〈0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.展开更多
Age-related eye diseases,including cataract,glaucoma,diabetic retinopathy(DR),and age-related macular degeneration(AMD),are the leading causes of vision loss in the world.Several studies have shown that the occurrence...Age-related eye diseases,including cataract,glaucoma,diabetic retinopathy(DR),and age-related macular degeneration(AMD),are the leading causes of vision loss in the world.Several studies have shown that the occurrence and development of these diseases have an important relationship with oxidative stress in the eye.The Keap1-Nrf2-ARE pathway is a classical pathway that resists oxidative stress and inflammation in the body.This pathway is also active in the development of age-related eye diseases.A variety of drugs have been shown to treat agerelated eye diseases through the Keap1-Nrf2-ARE(Kelch-like ECH-Associating protein 1-nuclear factor erythroid 2 related factor 2-antioxidant response element)pathway.This review describes the role of oxidative stress in the development of age-related eye diseases,the function and regulation of the Keap1-Nrf2-ARE pathway,and the therapeutic effects of drugs associated with this pathway on age-related eye diseases.展开更多
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice ...Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.展开更多
The excessive accumulation of reactive oxygen species(ROS)under osteoporosis precipitates a microenvironment with high levels of oxidative stress(OS).This could significantly interfere with the bioactivity of conventi...The excessive accumulation of reactive oxygen species(ROS)under osteoporosis precipitates a microenvironment with high levels of oxidative stress(OS).This could significantly interfere with the bioactivity of conventional titanium implants,impeding their early osseointegration with bone.We have prepared a series of strontium(Sr)-doped titanium implants via micro-arc oxidation(MAO)to verify their efficacy and differences in osteoinduction capabilities under normal and osteoporotic(high OS levels)conditions.Apart from the chemical composition,all groups exhibited similar physicochemical properties(morphology,roughness,crystal structure,and wettability).Among the groups,the low Sr group(Sr25%)was more conducive to osteogenesis under normal conditions.In contrast,by increasing the catalase(CAT)/superoxide dismutase(SOD)activity and decreasing ROS levels,the high Sr-doped samples(Sr75% and Sr100%)were superior to Sr25% in inducing osteogenic differentiation of MC3T3-E1 cells and the M2 phenotype polarization of RAW264.7 cells,thus enhancing early osseointegration.Furthermore,the results of both in vitro cell co-culture and in vivo studies also showed that the high Sr-doped samples(especially Sr100%)had positive effects on osteoimmunomodulation under the OS microenvironment.Ultimately,the collated findings indicated that the high proportion Sr-doped MAO coatings were more favorable for osteoporosis patients in implant restorations.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types...Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.展开更多
Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototox...Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.展开更多
BACKGROUND Revisiting the epidemiology of posttraumatic stress symptoms(PTSSs)among university students during the coronavirus disease 2019(COVID-19)pandemic as well as understanding the mental health help-seeking beh...BACKGROUND Revisiting the epidemiology of posttraumatic stress symptoms(PTSSs)among university students during the coronavirus disease 2019(COVID-19)pandemic as well as understanding the mental health help-seeking behavior of individuals with PTSSs has critical implications for public mental health strategies in future medical pandemics.AIM To investigate the prevalence and correlates of PTSSs among university students during the first wave of the COVID-19 pandemic in China and to examine mental health help-seeking behaviors among these students.METHODS A total of 2507 Chinese university students were recruited via snowball sampling.The students completed the Seven-item Screening Scale for Post-traumatic Stress Disorder during the first wave of the COVID-19 pandemic in China.Sociodemo-graphic characteristics,pandemic-related characteristics,and mental health help-seeking behaviors of students with PTSSs were also collected.RESULTS The prevalence of PTSSs among the participants was 28.0%.Seven significant correlates of PTSSs were identified(odds ratio=1.23-3.65,P≤0.024):Female sex,being 19 years old or older,living with others or alone,a low level of family economic status,fair or poor interpersonal relationships,severe or very severe local pandemic,and having family members diagnosed with COVID-19.However,only 3.28%of the students with PTSSs reported seeking help from mental health specialists.Among the 23 students who sought help from mental health specialists,13 opted for online or telephone-based psychological consultation.CONCLUSION Our data suggest that there was a high risk of PTSSs among university students and a high level of unmet mental health needs during the COVID-19 pandemic.The delivery of mental health services online or via telephone is a promising approach to address these unmet needs.展开更多
BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current statu...BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.展开更多
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb...Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.展开更多
Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with...Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder.In addition,the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment.Evidence suggests that this condition is a multisystem disorder that affects many biological systems,raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder.We performed a PubMed search for microRNAs(miRNAs)in post-traumatic stress disorder(PTSD)that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023.These included four studies with whole blood,seven with peripheral blood mononuclear cells,four with plasma extracellular vesicles/exosomes,and one with serum exosomes.One of these studies had also used whole plasma.Two studies were excluded as they did not involve microRNA biomarkers.Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat,and only two were from recently traumatized adult subjects.In measuring miRNA expression levels,many of the studies had used microarray miRNA analysis,miRNA Seq analysis,or NanoString panels.Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls.The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood;miR-193a-5p,-7113-5p,-125a,-181c,and-671-5p in peripheral blood mononuclear cells;miR-10b-5p,-203a-3p,-4488,-502-3p,-874-3p,-5100,and-7641 in plasma extracellular vesicles/exosomes;and miR-18a-3p and-7-1-5p in blood plasma.Several important limitations identified in the studies need to be taken into account in future studies.Further studies are warranted with war veterans and recently traumatized children,adolescents,and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.展开更多
Objective:To evaluate correlation between the levels of vitamin D and male infertility as well as to determine the efficacy of vitamin D in improving the male fertility by up-regulating the levels of testosterone and ...Objective:To evaluate correlation between the levels of vitamin D and male infertility as well as to determine the efficacy of vitamin D in improving the male fertility by up-regulating the levels of testosterone and spermatogenesis.Methods: In the present study, 130 male patients (aged 25-70 years) having fertility defects were screened and 145 healthy individuals were taken as control. All human subjects were screened for 4-hydroxynonenal, isoprostane-F2α, 8-hydroxy-2′-deoxyguanosine, vitamin D, luteinizing hormone, follicle stimulating hormone, testosterones, malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, and nitric oxide.Results: The screening analysis revealed that the levels of luteinizing hormone, follicle stimulating hormone, and testosterone were lower in male infertile subjects compared to healthy subjects. Similarly, the levels of vitamin D [(17.17 ± 2.30) ng/mL] and calcium[(6.29 ± 0.31) mg/dL] were significantly lower in infertile groups compared to the normal healthy groups. Moreover, the study revealed that the levels of superoxide dismutase, catalase, and glutathione peroxidase were significantly higher in healthy subjects compared to the infertile subjects.Conclusions:Vitamin D exhibits strong relevance to male fertility by maintaining the levels of sex hormones (luteinizing hormone, follicle stimulating hormone, and testosterone), up-regulating the antioxidant defense (superoxide dismutase, catalase, and glutathione peroxidase), and down-regulating the oxidative stress (malondialdehyde, nitric oxide, and inducible nitric oxide synthase species).展开更多
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an...Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
Oxidative stress is a common condition suffered by biological systems in aerobic conditions. Human semen also has its own molecular guard against the free radicals created by normal respiratory process or from immune ...Oxidative stress is a common condition suffered by biological systems in aerobic conditions. Human semen also has its own molecular guard against the free radicals created by normal respiratory process or from immune reactions. The equilibrium of the creation and scavenging of free radicals is mandatory in the spermatozoa to fertilize and initiate a full-term pregnancy. The paper is a systematic review of publications that evaluate oxidative stress in semen. The Cochrane Library, Medline (1966-2003), Embase (1988-2003), SciSearch (1981-2003) and the conference papers were searched. When sperm samples from fertile and infertile males were analyzed, some of the mechanisms that determine the oxidative stress level were found to be impaired while others were unaltered. In conclusion, the literature as a whole provides contradictory findings and it is necessary to carry out more work to identify all the enzymatic and non-enzymatic systems involved in oxidative stress in the ejaculate, in order to develop new diagnostic systems and therapeutic strategies for combating detrimental free radical imbalance in the semen.展开更多
We investigated the influence of different content of Zn^2+(0, 2, 4, 8, 16 mmol·kg^-1) on plant growth, activities of peroxidase (POD) and superoxide dismutase (SOD), free proline content and Zn accumulati...We investigated the influence of different content of Zn^2+(0, 2, 4, 8, 16 mmol·kg^-1) on plant growth, activities of peroxidase (POD) and superoxide dismutase (SOD), free proline content and Zn accumulation in four varieties of ryegrass (Loliurn perenne L.) hy pot cuhure experiment. The results showed that plant hiomass increased at the ranges of 0-2 (Tuoya), 0-4 (Yey- ing), 0-8 mmol·kg^-1(Airuisi and Taide), respectively, and then decreased under excess Zn. The activities of POD ,SOD and proline content in shoots decreased firstly, and then increased with the in crease of Zn content. The plaut biomass, activities of POD and SOD in Taide were evidently higher than in the other three varie ties. Root tolerance index (RTI) and Zn transport ratio from root to shoot (S/R) in Taide were exceed 1. 0. The maximum of Zn content was 583.9 mg/kg ( at 16 mmol·kg^-1) in Taide's shoot.展开更多
The study investigates major anti-oxidative constituents of ethanol extracts from the seeds of common buckwheat and tartary buckwheat. Ethanol extracts from buckwheat seeds were arranged to react with 1,1-diphenyl-2-p...The study investigates major anti-oxidative constituents of ethanol extracts from the seeds of common buckwheat and tartary buckwheat. Ethanol extracts from buckwheat seeds were arranged to react with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. HPLC was used to identify anti-oxidative constituents of the ethanol extracts, and electro-spray MS was used to characterize the structures of these identified anti-oxidative constituents to confirm them. The ethanol extracts of common buckwheat and tartary buckwheat seeds both had DPPH free radical-scavenging effect; HPLC analysis showed that the ethanol extracts of both common buckwheat and tartary buckwheat seeds presented two main anti-oxidation peaks, which correspondingly had same chromatographic retention times and spectral information; electro-spray MS analysis showed that the molecular weights and MS fragmentation patterns of the anti-oxidative constituents in the ethanol extracts from buckwheat seeds were the same as those of rutin and quercetin in the control samples. HPLC- MS/MS was capable of being used to rapidly identify anti-oxidative constituents in the extract of buckwheat seeds, and the main anti-oxidative constituents of buckwheat seed extract were mainly rutin and quercetin, and the anti-oxidative activity of quercetin was higher than that of rutin.展开更多
Objective:To determine the preventive effects of curcumin on peroxidative damage under two bed rest conditions.Methods:20 healthy male(10 with curcumin and 10 without curcumin ) volunteers were selected.They were stud...Objective:To determine the preventive effects of curcumin on peroxidative damage under two bed rest conditions.Methods:20 healthy male(10 with curcumin and 10 without curcumin ) volunteers were selected.They were studied before,during,and just on bed rest conditions at -6°head-down-tilt(HDT) bed rest and bed rest position(BD) for 10 days.We measured the salivary and serum oxidative markers such as Malonaldehyde,8-hydroxydeoxyguanosine, vitamin C and E just before HDT & BD.during HDT & BD experiment,and in course time of recovery with curcumin and without curcumin groups.Results:The values of serum and salivary vitamin C & E showed statistically significant decrease in both bed rest conditions as compared to those of the conditions before and during the recovery stage.However,these levels were not significantly lowered in curcumin groups in contrast to the groups without curcumin (P】0.05).MDA and 8-OHdG levels showed significant increase in simulating microgravity and zero gravity conditions as compared to those before and in the recovery stage.However,these levels were lower in curcumin groups in contrast to the groups without curcumin(P【0.05).Serum and salivary correlation analysis revealed a strong and highly significant correlation for MDA. vitamin C & E and 8 dihydro-2 deoxyguanosine(8-OHdG) in the conditions before,during and in the recovery periods in both bed rest conditions.Since saliva collection is easy and noninvasive, measurements of salivary marker levels may prove to be useful in the space research. Conclusions:Curcumin prevents peroxidative damage in both bed rest conditions.Further study is required on antioxidation actions of curcumin in space microgravity conditions.展开更多
Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were ran...Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was per- formed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D). Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression. Results: In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only, and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Conclusion: Vitamin C can protect vascular endothelial cells from mannitol-induced injury.展开更多
文摘Oxidative stress disturbs the balance between the production of reactive oxygen species(ROS)and the detoxification biological process.It plays an important role in the development and progression of many chronic diseases.Upon exposure to oxidative stress or the inducers of ROS,the cellular nucleus undergoes some biological processes via different signaling pathways,such as stress adaption through the forkhead box O signaling pathway,inflammatory response through the IκB kinase/nuclear factor-κB signaling pathway,hypoxic response via the hypoxia-inducible factor/prolyl hydroxylase domain proteins pathway,DNA repair or apoptosis through the p53 signaling pathway,and antioxidant response through the Kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 signaling pathway.These processes are involved in many diseases.Therefore,oxidative stress has gained more attraction as a targeting process for disease treatment.Meanwhile,anti-oxidative stress agents have been widely explored in pre-clinical trials.However,only limited clinical trials are performed to evaluate the efficacy of anti-oxidative stress agents or antioxidants in diseases.In this letter,we further discuss the current clinical trials related to anti-oxidative stress treatment in different diseases.More pre-clinical studies and clinical trials are expected to use anti-oxidative stress strategies as disease treatment or dietary supplementation to improve disease treatment outcomes.
基金funded by the National Natural Science Foundation of China (30901038, 31160468)the State Key Laboratory of Animal Nutrition, Ministry of Science and Technology, China (2004DA125184F1115)the Key Technology Research and Development Program of Guizhou Province, China ([2009]3085)
文摘Reducing dietary cation-anion difference (DCAD) has been proved an effective way to prevent milk fever in dairy cows. Based on the similar physiological gastro-intestinal tract anatomy and metabolic process between female goats and dairy cows, this study was conducted to evaluate the effects of varying DCAD on fluid acid-base status, plasma minerals concentration and anti-oxidative stress capacity of female goats. Urinary pH, plasma Ca, P and Mg; and anti-oxidative stress indices of total superoxide dismutase (T-SOD), hydrogen peroxide (HzO2), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were determined to evaluate the effect. Forty-eight Guizhou black female goats ((15±1.9) mon of old, (22.3±3.75) kg of BW) were randomly allocated to 4 blocks of 12 goats each and were fed 1 of 4 diets differed in DCAD level (calculated as Na+K-C1-S, mEq kg-1 DM). Levels of DCAD were preliminarily designed to be control (+ 150 mEq kg^-1 DM, CON), high DCAD (+300 mEq kg^-1 DM, HD), low DCAD (0 mEq kg^-1 DM, LD) and negative DCAD (-150 mEq kg^-1 DM, ND), respectively. A commercial anionic salts (Animate) and sodium bicarbonate (NaHCO3) were supplemented to reduce and increase DCAD level, respectively. There was no difference in dry matter intake for 4 groups of goats. Urine pH was aggressively decreased (P〈0.0001) with reduced DCAD and there was a strong association between DCAD and urine pH (R2=0.793, P〈0.0001). Compared with CON and HD feeding of LD and ND resulted in greater (P〈0.05) plasma Ca concentration. Plasma P level was increased (P〈0.05) when anionic salts were supplemented. The DCAD alteration did not affected (P〉0.05) plasma Mg level. There was no significant (P〉0.05) difference in plasma GSH-Px activity and H202, but anionic salts supplementation in LD and ND significantly increased (P〈0.05) plasma T-SOD activity and tended to reduce MDA (P〈0.1) over HD and CON. Results from this study indicated that reducing DCAD could decrease urine pH and increase plasma Ca concentration of female goats. Additionally, reducing DCAD was helpful to enhance anti-oxidative stress capability of female goats.
基金Supported by National Natural Science Foundation of China(No.81970801No.81670859)+1 种基金Natural Science Foundation of Hunan Province(No.2019JJ40001)Key Project of Changsha Science and Technology Bureau(No.kh1801229)。
文摘Age-related eye diseases,including cataract,glaucoma,diabetic retinopathy(DR),and age-related macular degeneration(AMD),are the leading causes of vision loss in the world.Several studies have shown that the occurrence and development of these diseases have an important relationship with oxidative stress in the eye.The Keap1-Nrf2-ARE pathway is a classical pathway that resists oxidative stress and inflammation in the body.This pathway is also active in the development of age-related eye diseases.A variety of drugs have been shown to treat agerelated eye diseases through the Keap1-Nrf2-ARE(Kelch-like ECH-Associating protein 1-nuclear factor erythroid 2 related factor 2-antioxidant response element)pathway.This review describes the role of oxidative stress in the development of age-related eye diseases,the function and regulation of the Keap1-Nrf2-ARE pathway,and the therapeutic effects of drugs associated with this pathway on age-related eye diseases.
基金supported financially by the National Natural Science Foundation of China,No.82071272(to YZ).
文摘Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response.Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region–specific,particularly involving the corticolimbic system,including the ventral tegmental area,nucleus accumbens,prefrontal cortex,amygdala,and hippocampus.Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology.In this review,we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression.We focused on associated molecular pathways and neural circuits,with special attention to the brain-derived neurotrophic factor–tropomyosin receptor kinase B signaling pathway and the ventral tegmental area–nucleus accumbens dopamine circuit.We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature,severity,and duration of stress,especially in the above-mentioned brain regions of the corticolimbic system.Therefore,BDNF might be a biological indicator regulating stress-related processes in various brain regions.
基金funded by National Natural Science Foundation of China(82171004,82071170&81701016)Zhejiang Provincial Science and Technology Project for Public Welfare(LY21H180006&LGF20H140002)+2 种基金Key Technological Innovation Projects of Wenzhou(ZY2019009)Wenzhou Public Welfare Science and Technology Project(Y20190099&Y2020118)Wenzhou Medical University Basic Scientific Research Operating Expenses(KYYW201905).
文摘The excessive accumulation of reactive oxygen species(ROS)under osteoporosis precipitates a microenvironment with high levels of oxidative stress(OS).This could significantly interfere with the bioactivity of conventional titanium implants,impeding their early osseointegration with bone.We have prepared a series of strontium(Sr)-doped titanium implants via micro-arc oxidation(MAO)to verify their efficacy and differences in osteoinduction capabilities under normal and osteoporotic(high OS levels)conditions.Apart from the chemical composition,all groups exhibited similar physicochemical properties(morphology,roughness,crystal structure,and wettability).Among the groups,the low Sr group(Sr25%)was more conducive to osteogenesis under normal conditions.In contrast,by increasing the catalase(CAT)/superoxide dismutase(SOD)activity and decreasing ROS levels,the high Sr-doped samples(Sr75% and Sr100%)were superior to Sr25% in inducing osteogenic differentiation of MC3T3-E1 cells and the M2 phenotype polarization of RAW264.7 cells,thus enhancing early osseointegration.Furthermore,the results of both in vitro cell co-culture and in vivo studies also showed that the high Sr-doped samples(especially Sr100%)had positive effects on osteoimmunomodulation under the OS microenvironment.Ultimately,the collated findings indicated that the high proportion Sr-doped MAO coatings were more favorable for osteoporosis patients in implant restorations.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金supported by the STI 2030—Major Projects 2021ZD0204000,No.2021ZD0204003 (to XZ)the National Natural Science Foundation of China,Nos.32170973 (to XZ),32071018 (to ZH)。
文摘Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
文摘Hearing loss is the third leading cause of human disability.Age-related hearing loss,one type of acquired sensorineural hearing loss,is largely responsible for this escalating global health burden.Noise-induced,ototoxic,and idiopathic sudden sensorineural are other less common types of acquired hearing loss.The etiology of these conditions is complex and multi-fa ctorial involving an interplay of genetic and environmental factors.Oxidative stress has recently been proposed as a likely linking cause in most types of acquired sensorineural hearing loss.Short non-coding RNA sequences known as microRNAs(miRNAs)have increasingly been shown to play a role in cellular hypoxia and oxidative stress responses including promoting an apoptotic response.Sensory hair cell death is a central histopathological finding in sensorineural hearing loss.As these cells do not regenerate in humans,it underlies the irreversibility of human age-related hearing loss.Ovid EMBASE,Ovid MEDLINE,Web of Science Core Collection,and ClinicalTrials.gov databases over the period August 1,2018 to July 31,2023 were searched with"hearing loss,""hypoxamiRs,""hypoxia,""microRNAs,""ischemia,"and"oxidative stress"text words for English language primary study publications or registered clinical trials.Registe red clinical trials known to the senior author we re also assessed.A total of 222studies were thus identified.After excluding duplicates,editorials,retra ctions,secondary research studies,and non-English language articles,39 primary studies and clinical trials underwent full-text screening.This resulted in 11 animal,in vitro,and/or human subject journal articles and 8 registered clinical trial database entries which form the basis of this narrative review.MiRNAs miR-34a and miR-29b levels increase with age in mice.These miRNAs were demonstrated in human neuroblastoma and murine cochlear cell lines to target Sirtuin 1/peroxisome proliferato r-activated receptor gamma coactivator-1-alpha(SIRT1/P GC-1α),SIRT1p53,and SIRT1/hypoxia-inducible factor 1-alpha signaling pathways resulting in increased apoptosis.Furthermore,hypoxia and oxidative stress had a similar adve rse apoptotic effect,which was inhibited by resve ratrol and a myocardial inhibitorassociated transcript,a miR-29b competing endogenous mRNA.Gentamicin reduced miR-182-5p levels and increased cochlear oxidative stress and cell death in mice-an effect that was corrected by inner ear stem cell-derived exosomes.There is ongoing work seeking to determine if these findings can be effectively translated to humans.
文摘BACKGROUND Revisiting the epidemiology of posttraumatic stress symptoms(PTSSs)among university students during the coronavirus disease 2019(COVID-19)pandemic as well as understanding the mental health help-seeking behavior of individuals with PTSSs has critical implications for public mental health strategies in future medical pandemics.AIM To investigate the prevalence and correlates of PTSSs among university students during the first wave of the COVID-19 pandemic in China and to examine mental health help-seeking behaviors among these students.METHODS A total of 2507 Chinese university students were recruited via snowball sampling.The students completed the Seven-item Screening Scale for Post-traumatic Stress Disorder during the first wave of the COVID-19 pandemic in China.Sociodemo-graphic characteristics,pandemic-related characteristics,and mental health help-seeking behaviors of students with PTSSs were also collected.RESULTS The prevalence of PTSSs among the participants was 28.0%.Seven significant correlates of PTSSs were identified(odds ratio=1.23-3.65,P≤0.024):Female sex,being 19 years old or older,living with others or alone,a low level of family economic status,fair or poor interpersonal relationships,severe or very severe local pandemic,and having family members diagnosed with COVID-19.However,only 3.28%of the students with PTSSs reported seeking help from mental health specialists.Among the 23 students who sought help from mental health specialists,13 opted for online or telephone-based psychological consultation.CONCLUSION Our data suggest that there was a high risk of PTSSs among university students and a high level of unmet mental health needs during the COVID-19 pandemic.The delivery of mental health services online or via telephone is a promising approach to address these unmet needs.
基金Supported by the Shijiazhuang Science and Technology Research and Development Program,No.221460383.
文摘BACKGROUND Emotional reactions,such as anxiety,irritability,and aggressive behavior,have attracted clinical attention as behavioral and emotional problems in preschool-age children.AIM To investigate the current status of family rearing,parental stress,and behavioral and emotional problems of preschool children and to analyze the mediating effect of the current status of family rearing on parental stress and behavioral/emo-tional problems.METHODS We use convenience sampling to select 258 preschool children in the physical examination center of our hospital from October 2021 to September 2023.The children and their parents were evaluated using a questionnaire survey.Pearson's correlation was used to analyze the correlation between child behavioral and emotional problems and parental stress and family rearing,and the structural equation model was constructed to test the mediating effect.RESULTS The score for behavioral/emotional problems of 258 preschool children was(27.54±3.63),the score for parental stress was(87.64±11.34),and the score for parental family rearing was(31.54±5.24).There was a positive correlation between the behavioral and emotional problems of the children and the“hostile/mandatory”parenting style;meanwhile,showed a negative correlation with the“support/participation”parenting style(all P<0.05).The intermediary effect value between the family upbringing of parents in parental stress and children's behavior problems was 29.89%.CONCLUSION Parental family upbringing has a mediating effect between parental stress and behavioral and emotional problems of children.Despite paying attention to the behavioral and emotional problems of preschool-age children,clinical medical staff should provide correct and reasonable parenting advice to their parents to promote the mental health of preschool-age children.
基金supported by the National Natural Science Foundation of China,Nos.82260245(to YX),81660207(to YX),81960253(to YL),82160268(to YL),U1812403(to ZG)Science and Technology Projects of Guizhou Province,Nos.[2019]1440(to YX),[2020]1Z067(to WH)+1 种基金Cultivation Foundation of Guizhou Medical University,No.[20NSP069](to YX)Excellent Young Talents Plan of Guizhou Medical University,No.(2022)101(to WH)。
文摘Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
文摘Post-traumatic stress disorder is a mental disorder caused by exposure to severe traumatic life events.Currently,there are no validated biomarkers or laboratory tests that can distinguish between trauma survivors with and without post-traumatic stress disorder.In addition,the heterogeneity of clinical presentations of post-traumatic stress disorder and the overlap of symptoms with other conditions can lead to misdiagnosis and inappropriate treatment.Evidence suggests that this condition is a multisystem disorder that affects many biological systems,raising the possibility that peripheral markers of disease may be used to diagnose post-traumatic stress disorder.We performed a PubMed search for microRNAs(miRNAs)in post-traumatic stress disorder(PTSD)that could serve as diagnostic biomarkers and found 18 original research articles on studies performed with human patients and published January 2012 to December 2023.These included four studies with whole blood,seven with peripheral blood mononuclear cells,four with plasma extracellular vesicles/exosomes,and one with serum exosomes.One of these studies had also used whole plasma.Two studies were excluded as they did not involve microRNA biomarkers.Most of the studies had collected samples from adult male Veterans who had returned from deployment and been exposed to combat,and only two were from recently traumatized adult subjects.In measuring miRNA expression levels,many of the studies had used microarray miRNA analysis,miRNA Seq analysis,or NanoString panels.Only six studies had used real time polymerase chain reaction assay to determine/validate miRNA expression in PTSD subjects compared to controls.The miRNAs that were found/validated in these studies may be considered as potential candidate biomarkers for PTSD and include miR-3130-5p in whole blood;miR-193a-5p,-7113-5p,-125a,-181c,and-671-5p in peripheral blood mononuclear cells;miR-10b-5p,-203a-3p,-4488,-502-3p,-874-3p,-5100,and-7641 in plasma extracellular vesicles/exosomes;and miR-18a-3p and-7-1-5p in blood plasma.Several important limitations identified in the studies need to be taken into account in future studies.Further studies are warranted with war veterans and recently traumatized children,adolescents,and adults having PTSD and use of animal models subjected to various stressors and the effects of suppressing or overexpressing specific microRNAs.
文摘Objective:To evaluate correlation between the levels of vitamin D and male infertility as well as to determine the efficacy of vitamin D in improving the male fertility by up-regulating the levels of testosterone and spermatogenesis.Methods: In the present study, 130 male patients (aged 25-70 years) having fertility defects were screened and 145 healthy individuals were taken as control. All human subjects were screened for 4-hydroxynonenal, isoprostane-F2α, 8-hydroxy-2′-deoxyguanosine, vitamin D, luteinizing hormone, follicle stimulating hormone, testosterones, malondialdehyde, superoxide dismutase, catalase, glutathione peroxidase, and nitric oxide.Results: The screening analysis revealed that the levels of luteinizing hormone, follicle stimulating hormone, and testosterone were lower in male infertile subjects compared to healthy subjects. Similarly, the levels of vitamin D [(17.17 ± 2.30) ng/mL] and calcium[(6.29 ± 0.31) mg/dL] were significantly lower in infertile groups compared to the normal healthy groups. Moreover, the study revealed that the levels of superoxide dismutase, catalase, and glutathione peroxidase were significantly higher in healthy subjects compared to the infertile subjects.Conclusions:Vitamin D exhibits strong relevance to male fertility by maintaining the levels of sex hormones (luteinizing hormone, follicle stimulating hormone, and testosterone), up-regulating the antioxidant defense (superoxide dismutase, catalase, and glutathione peroxidase), and down-regulating the oxidative stress (malondialdehyde, nitric oxide, and inducible nitric oxide synthase species).
基金Supported by American Diabetes AssociationAmerican Heart Association+3 种基金NIH NIEHSNIH NIANIH NINDSand NIH ARRA.
文摘Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
文摘Oxidative stress is a common condition suffered by biological systems in aerobic conditions. Human semen also has its own molecular guard against the free radicals created by normal respiratory process or from immune reactions. The equilibrium of the creation and scavenging of free radicals is mandatory in the spermatozoa to fertilize and initiate a full-term pregnancy. The paper is a systematic review of publications that evaluate oxidative stress in semen. The Cochrane Library, Medline (1966-2003), Embase (1988-2003), SciSearch (1981-2003) and the conference papers were searched. When sperm samples from fertile and infertile males were analyzed, some of the mechanisms that determine the oxidative stress level were found to be impaired while others were unaltered. In conclusion, the literature as a whole provides contradictory findings and it is necessary to carry out more work to identify all the enzymatic and non-enzymatic systems involved in oxidative stress in the ejaculate, in order to develop new diagnostic systems and therapeutic strategies for combating detrimental free radical imbalance in the semen.
基金Supported by the National Natural Science Foundation ofChina (29877021)
文摘We investigated the influence of different content of Zn^2+(0, 2, 4, 8, 16 mmol·kg^-1) on plant growth, activities of peroxidase (POD) and superoxide dismutase (SOD), free proline content and Zn accumulation in four varieties of ryegrass (Loliurn perenne L.) hy pot cuhure experiment. The results showed that plant hiomass increased at the ranges of 0-2 (Tuoya), 0-4 (Yey- ing), 0-8 mmol·kg^-1(Airuisi and Taide), respectively, and then decreased under excess Zn. The activities of POD ,SOD and proline content in shoots decreased firstly, and then increased with the in crease of Zn content. The plaut biomass, activities of POD and SOD in Taide were evidently higher than in the other three varie ties. Root tolerance index (RTI) and Zn transport ratio from root to shoot (S/R) in Taide were exceed 1. 0. The maximum of Zn content was 583.9 mg/kg ( at 16 mmol·kg^-1) in Taide's shoot.
文摘The study investigates major anti-oxidative constituents of ethanol extracts from the seeds of common buckwheat and tartary buckwheat. Ethanol extracts from buckwheat seeds were arranged to react with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. HPLC was used to identify anti-oxidative constituents of the ethanol extracts, and electro-spray MS was used to characterize the structures of these identified anti-oxidative constituents to confirm them. The ethanol extracts of common buckwheat and tartary buckwheat seeds both had DPPH free radical-scavenging effect; HPLC analysis showed that the ethanol extracts of both common buckwheat and tartary buckwheat seeds presented two main anti-oxidation peaks, which correspondingly had same chromatographic retention times and spectral information; electro-spray MS analysis showed that the molecular weights and MS fragmentation patterns of the anti-oxidative constituents in the ethanol extracts from buckwheat seeds were the same as those of rutin and quercetin in the control samples. HPLC- MS/MS was capable of being used to rapidly identify anti-oxidative constituents in the extract of buckwheat seeds, and the main anti-oxidative constituents of buckwheat seed extract were mainly rutin and quercetin, and the anti-oxidative activity of quercetin was higher than that of rutin.
文摘Objective:To determine the preventive effects of curcumin on peroxidative damage under two bed rest conditions.Methods:20 healthy male(10 with curcumin and 10 without curcumin ) volunteers were selected.They were studied before,during,and just on bed rest conditions at -6°head-down-tilt(HDT) bed rest and bed rest position(BD) for 10 days.We measured the salivary and serum oxidative markers such as Malonaldehyde,8-hydroxydeoxyguanosine, vitamin C and E just before HDT & BD.during HDT & BD experiment,and in course time of recovery with curcumin and without curcumin groups.Results:The values of serum and salivary vitamin C & E showed statistically significant decrease in both bed rest conditions as compared to those of the conditions before and during the recovery stage.However,these levels were not significantly lowered in curcumin groups in contrast to the groups without curcumin (P】0.05).MDA and 8-OHdG levels showed significant increase in simulating microgravity and zero gravity conditions as compared to those before and in the recovery stage.However,these levels were lower in curcumin groups in contrast to the groups without curcumin(P【0.05).Serum and salivary correlation analysis revealed a strong and highly significant correlation for MDA. vitamin C & E and 8 dihydro-2 deoxyguanosine(8-OHdG) in the conditions before,during and in the recovery periods in both bed rest conditions.Since saliva collection is easy and noninvasive, measurements of salivary marker levels may prove to be useful in the space research. Conclusions:Curcumin prevents peroxidative damage in both bed rest conditions.Further study is required on antioxidation actions of curcumin in space microgravity conditions.
文摘Objective: Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Methods: Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was per- formed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D). Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression. Results: In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only, and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Conclusion: Vitamin C can protect vascular endothelial cells from mannitol-induced injury.